Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии
Распределение одной сл\в, входящей в систему, найденное при условии, что другая сл\в приняла определенное значение, называется условным законом распределения. Усл закон распр можно задавать как функцией распределения так и плотностью распределения. Усл плотность распределения вычисляется по формулам: ; . Усл плотность распр обладает всеми св-ми плотности распределения одной сл\в. Условным м\о искретной сл\в Y при X = x (х – определенное возможное значение Х) называется произведение всех возможных значений Y на их условные вероятности. Для непрерывных сл\в: , где f(y/x) – усл плотность сл\в Y при X=x. Усл м\о M(Y/x)=f(x) является функцией от х и называется функцией регрессии Х на Y. Пример. Найти условное математическое ожидание составляющей Y при X= x1=1 для дискретной двумерной сл\в, заданной таблицей:
;
Аналогично определяются усл дисперсия и условные моменты системы сл\в. 28. Неравенство Маркова (лемма Чебышева) с док-вом для дискретной сл\величины. Пример. Теорема. Если сл\в Х принимет только неотриц знач и имеет мат\о, то для любого положительного числа А верно неравенство: . Доказательство для дискретной сл\в Х:Расположим значения дискр сл\в Х в порядке возрастания, из кот часть значений будет не больше числаА, а др часть будут больше А, т.е Запишем выражение для м\о M(X): , где - в-ти т\ч сл\в Х примет значения . Отбрасывая первые k неотрицательных слагаемых получим: . Заменяя в этом неравенстве значения меньшим числом, получим неравенство: или . Сумма в-тей в левой части представляет сумму в-ей событий , т.е в-ть соб Х>А. Поэтому . Т.к события и противоположные, то заменяя выражением , придём к др форме неравенства Маркова: . Неравенство Маркова применимо к любым неотрицательным сл\в. 29. Неравенство Чебышева для средней арифметической сл\в. Теорема Чебышева с док-м и её значение и пример. Теорема Чебышева(ср.арифм). Если дисперсии n независимых сл\в ограничены 1 и той же постоянной, то при неограниченном увеличении числа n ср арифметическая сл\величин сходится по в-ти к средней арифм их м\ожиданий , т.е или *(над стрелкой Ро- R) Докажем ф-лу и выясним смысл формулировки «сходимость по в-ти». По условию , , где С - постоянное число. Получим неравенство Чебышева в форме () для ср арифм сл\в, те для . Найдём м\о M(X) и оценку дисперсии D(X): ; (здесь использованы свойства м\о и дисперсии и т\ч сл\в независимы, а след-но, дисперсия их суммы = сумме дисперсий) Запишем неравенство для сл\в :
30. Теорема Чебышева с выводом и его частные случаи для сл\в, распределённой по биномиальному закону, и для частности события. Неравенство Чебышева. Теорема. Для люб сл\в имеющей м\о и дисперсию, справедливо неравенство Чебышева: , где . Применим неравенство Маркова в форме к сл\в , взяв в кач + числа . Получим: . Т.к неравенство равносильно неравенству , а есть дисперсия сл\в Х, то из неравенства получаем доказываемое . Учитывая, что события и противоположны, неравенство Чебышева можно записать и в форме: . Неравенство Чебышева применимо для любых сл\в. В форме оно устанавливает верхнюю границу, а в форме - нижнюю границу в-ти рассм-го события. Запишем неравенство Чебышева в форме для некоторых сл\в: А) для сл\в Х=m, имеющей биноминальный закон распр с м\о a=M(X)=np и дисперсией D(X)=npq. ; Б) для частности m\n события в n независимых испытаниях, в каждом из кот оно может произойти с 1 и той же в-тью ;и имеющей дисперсию : . 31. Закон больших чисел. Теорема Бернулли с док-м и её значение. Пример. К законам больших чисел относятся т Чебышева (наиболее общий случай) и т Бернулли (простейший случай) Теорема Бернулли Пусть производится n независимых испытаний, в каждом из которых в-ть появления события А равно р. Возможно определить примерно относительную частоту появления события А. Теорема. Если в каждом из n независимых испытаний в-ть р появления события А постоянно, то сколь угодно близка к 1 в-ть т\ч отклонение относительной частоты от в-ти р по абсолютной величине будет сколь угодно малым, если число испытаний р достаточно велико. m – число появлений события А. Из всего сказанного выше не следует, что с увеличением число испытаний относительная частота неуклонно стремится к в-ти р, т.е. . В теореме имеется в виду только в-ть приближения относительной частоты к в-ти появления события А в каждом испытании. В случае, если вероятности появления события А в каждом опыте различны, то справедлива следующая теорема, известная как теорема Пуассона. Теорема. Если производится п независимых опытов и вероятность появления события А в каждом опыте равна рi, то при увеличении п частота события А сходится по вероятности к среднему арифметическому вероятностей рi.
|