Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии





Распределение одной сл\в, входящей в систему, найденное при условии, что другая сл\в приняла определенное значение, называется условным законом распределения.

Усл закон распр можно задавать как функцией распределения так и плотностью распределения.

Усл плотность распределения вычисляется по формулам:

; . Усл плотность распр обладает всеми св-ми плотности распределения одной сл\в.

Условным м\о искретной сл\в Y при X = x (х – определенное возможное значение Х) называется произведение всех возможных значений Y на их условные вероятности.

Для непрерывных сл\в: , где f(y/x) – усл плотность сл\в Y при X=x.

Усл м\о M(Y/x)=f(x) является функцией от х и называется функцией регрессии Х на Y.

Пример. Найти условное математическое ожидание составляющей Y при X= x1=1 для дискретной двумерной сл\в, заданной таблицей:

 

Y X
x1=1 x2=3 x3=4 x4=8
y1=3 0,15 0,06 0,25 0,04
y2=6 0,30 0,10 0,03 0,07

;

 

Аналогично определяются усл дисперсия и условные моменты системы сл\в.

28. Неравенство Маркова (лемма Чебышева) с док-вом для дискретной сл\величины. Пример.

Теорема. Если сл\в Х принимет только неотриц знач и имеет мат\о, то для любого положительного числа А верно неравенство: . Доказательство для дискретной сл\в Х:Расположим значения дискр сл\в Х в порядке возрастания, из кот часть значений будет не больше числаА, а др часть будут больше А, т.е

Запишем выражение для м\о M(X): , где

- в-ти т\ч сл\в Х примет значения . Отбрасывая первые k неотрицательных слагаемых получим: . Заменяя в этом неравенстве значения меньшим числом, получим неравенство: или . Сумма в-тей в левой части представляет сумму в-ей событий , т.е в-ть соб Х>А. Поэтому . Т.к события и противоположные, то заменяя выражением , придём к др форме неравенства Маркова: . Неравенство Маркова применимо к любым неотрицательным сл\в.

29. Неравенство Чебышева для средней арифметической сл\в. Теорема Чебышева с док-м и её значение и пример.

Теорема Чебышева(ср.арифм). Если дисперсии n независимых сл\в ограничены 1 и той же постоянной, то при неограниченном увеличении числа n ср арифметическая сл\величин сходится по в-ти к средней арифм их м\ожиданий , т.е или *(над стрелкой Ро- R)

Докажем ф-лу и выясним смысл формулировки «сходимость по в-ти». По условию , , где С - постоянное число. Получим неравенство Чебышева в форме () для ср арифм сл\в, те для . Найдём м\о M(X) и оценку дисперсии D(X): ;

(здесь использованы свойства м\о и дисперсии и т\ч сл\в независимы, а след-но, дисперсия их суммы = сумме дисперсий)

Запишем неравенство для сл\в :

 

30. Теорема Чебышева с выводом и его частные случаи для сл\в, распределённой по биномиальному закону, и для частности события.

Неравенство Чебышева. Теорема. Для люб сл\в имеющей м\о и дисперсию, справедливо неравенство Чебышева: , где .

Применим неравенство Маркова в форме к сл\в , взяв в кач + числа . Получим: . Т.к неравенство равносильно неравенству , а есть дисперсия сл\в Х, то из неравенства получаем доказываемое . Учитывая, что события и противоположны, неравенство Чебышева можно записать и в форме: . Неравенство Чебышева применимо для любых сл\в. В форме оно устанавливает верхнюю границу, а в форме - нижнюю границу в-ти рассм-го события.

Запишем неравенство Чебышева в форме для некоторых сл\в:

А) для сл\в Х=m, имеющей биноминальный закон распр с м\о a=M(X)=np и дисперсией D(X)=npq.

;

Б) для частности m\n события в n независимых испытаниях, в каждом из кот оно может произойти с 1 и той же в-тью ;и имеющей дисперсию : .

31. Закон больших чисел. Теорема Бернулли с док-м и её значение. Пример.

К законам больших чисел относятся т Чебышева (наиболее общий случай) и т Бернулли (простейший случай)

Теорема Бернулли Пусть производится n независимых испытаний, в каждом из которых в-ть появления события А равно р. Возможно определить примерно относительную частоту появления события А.

Теорема. Если в каждом из n независимых испытаний в-ть р появления события А постоянно, то сколь угодно близка к 1 в-ть т\ч отклонение относительной частоты от в-ти р по абсолютной величине будет сколь угодно малым, если число испытаний р достаточно велико.

m – число появлений события А. Из всего сказанного выше не следует, что с увеличением число испытаний относительная частота неуклонно стремится к в-ти р, т.е. . В теореме имеется в виду только в-ть приближения относительной частоты к в-ти появления события А в каждом испытании.

В случае, если вероятности появления события А в каждом опыте различны, то справедлива следующая теорема, известная как теорема Пуассона. Теорема. Если производится п независимых опытов и вероятность появления события А в каждом опыте равна рi, то при увеличении п частота события А сходится по вероятности к среднему арифметическому вероятностей рi.

 

 







Дата добавления: 2015-06-15; просмотров: 454. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия