Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Зависимость между азимутами истинным, магнитным и дирекционным углом





Вследствие непараллельности между собой меридианов истинный азимут протяженной прямой АВ (рис.9) принимает различные значения в точках А и В. В средних широтах истинный азимут изменяется на одну минуту через каждые один-два километра расстояния по параллели. Это осложняет применение азимутов и поэтому для построения планов используют дирекционные углы.

 

  Х
Х (С) Х (С) Х (С) С g

       
   
 

 


Рис.9.1 Зависимость между прямым Рис.9.2 Зависимость между прямым

и обратным дирекционными углами и обратным истинными азимутами

aАВ = aВА + 180°. ААВ = АВА + 180° -g.

Из рис. 8.1 следует

А = a + g,

А = Ам+ d.

Приравняем правые части равенств

a+ g = Ам+ d или a = Ам+ d - g.

Зональное сближение меридианов g и магнитное склонение d для данной местности указывают на топографических картах местности.

СПОСОБЫ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ТОЧЕК НА МЕСТНОСТИ

Положение любой точки местности определяют относительно каких-либо точек или линий, положение которых известно заранее, чаще всего относительно отрезков прямых, концы которых отмече­ны на местности специальными знаками.

Пусть требуется определить положение некоторой точки М мест­ности относительно известных точек А и В, составляющих исход­ную прямую АВ. Возможны следующие наиболее простые и рас­пространенные на практике способы решения такой задачи.

Способ перпендикуляров (способ прямоугольных коорди­нат). Опустим из точки М (рис. 1.14, а) на прямую АВ перпендику­ляр, основание которого определится точкой С. Если измерить на местности величину перпендикуляра у = МО и расстояние х = АС от точки А до основания перпендикуляра С, то эти две линейные величины однозначно определят положение искомой точки М от­носительно исходного отрезка АВ. Длины хну можно представить плоскими прямоугольными координатами точки М, поэтому опи­санный способ называют способом перпендикуляров или способом координат. Если прямую АВ принять за ось абсцисс прямоугольной


а - перпендикуляров; б - полярный; в - прямой угловой засечки; г - линейной засечки; д - боковой засечки

системы координат, то расстояние х будет абсциссой точки М, ay ~ ее ординатой.

Способ полярных координат. Положение искомой точки М можно определить, измерив в точке А горизонтальный угол а и го­ризонтальное расстояние АМ= 1 (рис. 1.14, б). При этом прямую АВ называют полярной осью, угол а - полярным углом, отрезок / -радиусом-вектором. Такой способ называют способом полярных координат или просто полярным. Положение точки М определя­ется, таким образом, одной линейной - / и одной угловой величи­ной - а.

Способ прямой угловой засечки. Положение точки М можно определить, измерив два горизонтальных угла а и /3 в точках А и В (рис. 1.14, в). При этом отрезок АВ = Ь называют базисом засечки. В этом способе положение точки М определяется, таким образом, двумя угловыми величинами а и /3.

Способ линейной засечки. Для определения положения точки М измеряют две линейные величины AM = S\ и ВМ = S2 (рис. 1.14, г). Базисом засечки b является отрезок АВ.

Способ боковой засечки. Положение точки М можно опреде­лить, измерив два горизонтальных угла - а в точке А и 7 в точке М (рис. 1.14, д).

Таким образом, для определения положения искомой точки от­носительно известной прямой требуется измерение на местности двух величин: либо двух линейных, либо двух угловых, либо одной линейной и одной угловой.

 

ПРЯМАЯ И ОБРАТНАЯ ГЕОДЕЗИЧЕСКИЕ ЗАДАЧИ НА ПЛОСКОСТИ

При вычислительной обработке результатов измерений на мест­ности, связанной с составлением плана, проектированием инженер­ных сооружений, перенесением проектов в натуру возникает необ­ходимость решать наиболее часто встречающиеся на практике прямую и обратную геодезические задачи.







Дата добавления: 2015-06-15; просмотров: 1020. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия