Анализ медико-биологических данных на основе их графического представления
Вернемся к примеру с анализом роста в группе людей. Если группа достаточно большая, то мы получим очень большой ряд данных: 175, 172, 180, 188, 166, 168, 170, 175, 178, 182, 188, 169 175, 172, 180, 188, 166, 168, 170, 175, 178, 182, 188, 169 175, 172, 180, 188, 166, 168, 170, 175, 178, 182, 188, 169……… и затруднимся дать обобщающую характеристику этой совокупности. Для более наглядного представления данных обычно используются графики, рисунки, диаграммы, таблицы. Воспользуемся подобным методом и мы – разобьем весь диапазон роста от минимума до максимума на равные интервалы по 10 см и посчитаем сколько объектов попадет в каждый из этих интервалов (частоту встречаемости), а затем построим график, как показано на рисунке 6А – по оси абсцисс отложим интервалы, а по оси ординат – частоту встречаемости (абсолютную или относительную в %). Полученный график называется гистограммой распределения, он показывает, насколько часто встречаются те или иные значения изучаемой случайной величины (его вероятность), в данном случае роста, или другими словами как рост распределен по различным диапазонам. Теперь по этому графику попытаемся дать обобщенную характеристику изучаемой группе.
Минимальный рост лежит в пределах от 140 до 150 см, самые высокие имеют рост 190-200 см. Наиболее часто встречается средний рост (170-180 см) в 25% всех случаев. По мере удаления от среднего роста в меньшую и большую сторону частота встречаемости снижается. Низкорослые и высокие встречаются реже, чем лица среднего роста. Самые маленькие (140-150 см) составляют 10% совокупности, самые высокие (190-200 см) - 12%. Представим, что количество обследованных бесконечно увеличивается, а длина интервалов бесконечно уменьшается, тогда мы получим график, который изображен на рисунке 6 в виде огибающей гистограммы. Это кривая дает нам представление о законе распределения случайной величины (иногда говорят просто распределение). Она может иметь различную форму. Распределение многих случайных величин имеет симметричный колоколообразный вид, и такое распределение называется нормальным (еще его называют Гауссовским распределением). Нормальное распределение имеет важное значение в статистике, поскольку обладает рядом замечательных свойств, о которых мы поговорим позже. Кроме нормального существуют и другие виды распределения. Так, форма гистограммы, представленной на рисунке 6Б, явно не соответствует колоколообразному виду. В статистике широко используются биноминальное, логарифмическое, хи-квадрат распределения, распределения Стъюдента, Фишера и др. Надо отметить, что оценка закона распределения по кривой огибающей гистограммы является не совсем корректным, качественным, учитывая также и то, что гистограмма строится по ограниченным выборочным данным. Существуют специальные статистические процедуры и критерии, которые позволяют строго количественно оценить закон распределения. Им будет посвящена специальная глава. В медицинских исследованиях при построении гистограмм длительность интервалов может быть не одинаковой, а их границы заранее оговорены. Например, в возрастной физиологии приняты следующие возрастные периоды
При анализе частоты пульса возможны такие интервалы: меньше 60 уд/мин, 60-80 уд/мин, больше 80 уд/мин.
|