Задачи биостатистики
Задачи биостатистики Ниже приведены наиболее распространенные определения статистики вообще, и биостатистики в частности. Статистика – отрасль знаний (наука), изучающая методы сбора, систематизации, обработки и интерпретации результатов наблюдений с целью выявления статистических закономерностей. Биостатистика (биометрика) – отрасль знаний, связанная с разработкой и использованием статистических методов в научных исследованиях в медицине, здравоохранении и эпидемиологии. Чтобы вникнуть в суть этих определений выясним, в чем была необходимость появления биостатистики, какие задачи она решает?
Рисунок 1
Первое, что приходит на ум – это определить средний рост. Теперь задумайтесь, а что это нам дает, какую информацию о росте людей в данной группе несет среднее значение. Многих такой вопрос ставит в тупик. Давайте обратимся к рисунку 2.
Рисунок 2 Из него видно, что при равенстве средних значений рост людей в двух группах значительно разница. Отсюда можно сделать вывод, что для их сравнения одних только средних недостаточно. По-видимому, нужны еще какие-то показатели. Когда на автомобильном предприятии выпускают партию машин одной модели можно однозначно охарактеризовать объем двигателей этих машин, например, 1500 см3. Так нельзя поступить в случае биологических объектов в связи с тем, что они весьма изменчивы, обладают индивидуальными свойствами. Как говорят: нет двух одинаковых людей, как и нет двух одинаковых болезней. Еще один пример приведен на рисунке 3. Это результаты измерения артериального давления до и после приема некоторого гипотензивного препарата. В исследовании приняли участие две группы.
Задача состоит в том, чтобы определить, насколько эффективен препарат, ведь реакции были неоднозначны: у кого-то снижение было значительным, у кого- то - незначительным, а есть и такие у кого АД повысилось. И еще одно - в какой из двух групп эффект был более выраженным? Стоит ли такой препарат производить и назначать гипертоникам? Подобные проблемы решаются на основе статистического анализа множественных наблюдений. Обобщая вышесказанное, мы можем сформулировать первую задачу биостатистики - анализ групповых свойств и массовых явлений в биологической среде. Этому вопросу посвящен раздел статистики называемый описательной статистикой. Теперь перейдем ко второй задаче биостатистики. Предположим, что в предыдущем примере с гипотензивным препаратом, испытанном на 7 больных, вы сделали вывод о его эффективности. Можем ли мы на этом основании предложить его для массового выпуска, будет ли он помогать и другим, тысячам, страдающим повышенным артериальным давлением? Наверное, многие ответят нет, не можем. Что же в таком случае делать, как проверить это средство, ведь как бы мы не увеличивали количество привлеченных к испытаниям лиц, все равно не сможем охватить всю совокупность гипертоников земного шара (в статистике используют термин генеральная совокупность). А ведь только это нас и интересует, а не результаты какого-то отдельного (выборочного) исследования, ведь мы предполагаем назначать препарат повсеместно. Статистические методы позволяют перенести результаты выборочных исследований на всю генеральную совокупность объектов, но с учетом, что есть вероятность ошибочности нашего утверждения. И если эта вероятность невелика, то мы принимаем сделанные выводы, в противном случае – отвергаем. Вопрос о том велика или невелика ошибка решает сам исследователь, исходя из сути решаемой проблемы. Например, я утверждаю, что данный препарат эффективен во всей генеральной совокупности, при этом вероятность ошибки составляет 0,05 (т.е. 5 %) и это меня вполне устраивает. Возможно, у кого-то другого более жесткие требования и он удовлетвориться только вероятностью ошибки не более 0,01 (1%). Следующий случай продемонстрирует нам, к каким последствиям может привести незнание законов статистики и неумение ими пользоваться. Случай этот выдуманный, но весьма показательный. Фармкомпания разработала лекарственное средство, позволяющее повысить уровень гемоглобина, и испытало его на выборке из 5 человек. Результаты, приведенные на графике 4А, позволяют говорить о высокой его эффективности, ведь чем выше доза препарата, тем выше уровень Hb.
На основании этих данных было налажено массовое производство, вложены значительные финансовые и людские ресурсы. Однако, время показало, что препарат залежался на складах и его не назначают врачи. Озадачившись, ученые провели повторное, более массовое испытание и вот, что оно дало – одна и та же доза может быть эффективной для одних лиц и неэффективной для других (рисунок 4Б). Отнеся результаты выборочных исследований на всю генеральную совокупность, исследователи не оценили вероятность ошибки полученных результатов, а она была, по-видимому, значительной, т.е. полученная эффективность носила случайный характер. Таким образом, мы фактически сформулировали вторую задачу биостатистики. Смысл ее в принятии наиболее обоснованного суждения относительно свойств и характеристик генеральной совокупности с опорой на результаты изучения выборки. Эта задача рассматривается в разделе, называемом теорией проверки статистических гипотез. Статистические методы позволяют также решать задачи выявления взаимозависимостей между признаками, изучения динамики состояния биообъектов во времени, задачи классификации и прогнозирования.
Основные понятия и определения биостатистики Терминология имеет важное значение в любой области знаний, поскольку, не владея ей, нельзя понять суть излагаемого, и соответственно невозможно использовать знания на практике. Проблема состоит еще в том, что различные авторы или коллективы, научные школы могут использовать различную терминологию. Так, с советских времен в статистике закрепились термины и обозначения, отличающиеся от тех, что приняты в зарубежной литературе. Поэтому нам необходимо определиться с терминологией, которую будем использовать в дальнейшем. Любой биообъект характеризуется какими-либо признаками. Например: рост, вес, артериальное давление, пульс, уровень гемоглобина, цвет глаз и т.д. При измерении этих признаков у разных объектов получаем статистические данные. Если у каждого объекта измеряется один признак (например, гемоглобин), то получаются одномерные данные, если два признака (гемоглобин и ЧСС) – то данные двумерные, и т.д. – многомерные. Пусть измерен пульс у разных людей и получены статистические данные: 65, 68, 72, 75, 80, 60, 65, 64, 61, 77, 73, 73, 69, 60….. С математической точки зрения пульс представляет собой случайную величину. Это одно из основных понятий теории вероятности, на которую во многом опирается статистика. Случайной величиной X (x1, x2, x3 …..xi……xn) называется величина, которая в результате опыта может в определенных пределах принять то или иное значение, неизвестно заранее какое именно. Генеральная совокупность - это множество всех обследуемых объектов, объединенных общими свойствами. Генеральная совокупность мужчин объединена половой принадлежностью, а генеральная совокупность голубоглазых мужчин имеют два общих свойства. Один и тот же объект может принадлежать разным генеральным совокупностям, в зависимости от того о каком общем свойстве идет речь. Как правило (но не всегда), генеральная совокупность имеет очень много элементов (объектов), либо они труднодоступны. Поэтому обследуется некоторая часть генеральной совокупности – выборочная совокупность (выборка). Количество объектов в выборочной совокупности называется объемом выборки (n). Выборка должна давать правильное, неискаженное представление о генеральной совокупности, или, как говорят, быть репрезентативной. Например, нельзя судить о заболеваемости кишечными инфекциями, обследуя только районы с высокими социально-экономическими условиями. Как мы уже отмечали, результаты исследования выборки с определенной долей вероятности распространяются на всю генеральную совокупность, т.е. определяется их статистическая значимость.
|