Теория проверки статистических гипотез
Важное место в практике врача занимает процесс сравнения. По сути, вся его деятельность – это постоянное сравнение: больного со здоровым, состояния организма до и после лечения, эффективности диагностических или лечебных методов и т.д. При этом надо учитывать, что если врачу важны результаты отдельного больного, то общество в целом интересуют эффекты на популяционном уровне (на уровне генеральной совокупности), т.е. поможет ли новый препарат всем больным данной нозологии, сколько процентов из всех больных правильно диагностируется с помощью нового метода, как часто встречается то или иное заболевание в различных популяциях. Как правило, ответить на эти вопросы можем, лишь опираясь на выборочные данные, на выборку. Мы уже указывали, что выборочные данные не совсем точно отражают истинное положение дел - делая по ним то или иное заключение, надо учитывать, что есть вероятность ошибиться и эта вероятность может быть достаточно большой. Исследователь сам должен решить устраивает ли его такая ошибка, принимать или не принимать эти результаты. В связи с этим в статистике выработана специальная процедура, которая носит название проверка статистических гипотез. Т.е. при наличии выборочных данных предварительно высказываются предположения – гипотезы. Различают нулевую Н(0) и альтернативную Н(1) гипотезы. Нулевая гипотеза содержит предположение о равенстве (отсутствии эффекта), о соответствии, о независимости. Например, о равенстве средних значений гемоглобина у жителей двух различных районов (т.е. эффект от места жительства отсутствует). Или - распределение случайной величины соответствует нормальному закону. Или - заболеваемость не зависит от профессиональной принадлежности. Для исследователя больший интерес представляет альтернативная гипотеза, поскольку она соответствует целям большинства исследований – найти различия, зависимости, несоответствия. Максимальная вероятность ошибки, которую может себе позволить исследователь, принимая альтернативную гипотезу (т.е. отклонив нулевую) называется уровнем значимости иобозначается буквой α (альфа). Эту ошибку также называют ошибкой I рода. Уровень значимости – это вероятность того, что мы сочли различия существенными, в то время как они на самом деле случайны. Уровень значимости α; задается самим исследователем, исходя из сути решаемой проблемы. В медико-биологических задачах обычно принимают α =0,05 (5%), 0,01(1%) или 0,001 (0,1%). При α =0,05 если мы примем альтернативную гипотезу, то в более чем 95% случаях гипотеза будет верна, а в менее чем 5% - ошибочна. Также может возникнуть ошибка, если мы принимаем нулевую гипотезу, в то время как она не верна, другими словами, не находим существующие различия. Эта ошибка II рода, ее вероятность обозначается буквой β;. Величина (1- β;) называется мощностью критерия – это способность критерия найти различия там, где они заведомо существуют. Для принятия или отклонения гипотезы используются статистические критерии. Они подразделяются на два вида: параметрические критерии - используются если • признаки количественные • совокупности имеют нормальное распределение • дисперсии совокупностей не сильно различаются непараметрические критерии - используются если • признаки количественные, но распределение не соответствует нормальному • или если распределение неизвестно и нельзя его проверить (т.е. n<30) • или если признаки качественные Выбор критерия определяется также тем, являются ли сравниваемые выборки зависимыми или независимыми. Независимые выборки – это выборки, состоящие из разных объектов, причем значения случайной величины в одной выборке не зависят от его значений в другой выборке. Например, сравниваются выборки, состоящие из больных и здоровых, или одна группа принимает один препарат, вторая группа – другой, выборки мужчин и женщин, строителей и шахтеров и т.д. Зависимые выборки состоят из одних и тех же объектов, исследованных «до» и «после». Например, гемоглобин у больных до и после лечения, ЧСС спортсменов до и после физической нагрузки, АД у гипертоников в динамике по годам и т.д. Гипотезы можно проверить двумя путями
|