Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СЛУЧАЙ 2. Выборки зависимые





Для сравнения двух зависимых выборок или выборок с попарно связанными вариантами проверяют гипотезу о равенстве нулю среднего значения их попарных разностей. Такая задача возникает, когда имеются данные об изменении интересующего признака у каждого пациента. Например, если группа пациентов получала изучаемый метод лечения, и у каждого пациента измерялось значение признака до и после лечения. В данном случае предстоит проверить нулевую гипотезу о равенстве нулю изменений этого признака в результате получения терапии.

При подобных исследованиях все наблюдения можно представить в виде n -пар измерений (например, до и после)

Для каждой пары вычисляется разность di, где i=1, n

Для полученного ряда вычисляется среднее и среднеквадратичное отклонение


Далее вычисляется значение критерия Стъюдента

 

Проверка гипотезы производится по таблицам распределения Стьюдента (Приложение 2) для выбранного уровня значимости и числа степеней свободы f= п- 1.

Если │tвыч │<tкрит то принимается Н(0)

 

Если │tвыч│≥tкрит то принимается Н(1) и делается заключение о наличии статистически значимых различий между генеральными средними значениями «до» и «после».

Пример. В группе из 6 человек изучалось влияние пробежки на ЧСС (уд/мин). В результате опыта получилось 2 ряда ЧСС: первый – до пробежки, второй – после пробежки:  
До пробежки, уд/мин.            
После пробежки, уд/мин.            

 

Изменяется ли ЧСС после пробежки? Необходимо оценить статистическую значимость полученных результаты, если известно, что ЧСС имеет нормальное распределение.

Для наглядности представим данные в следующей таблице:

 

x1i (до пробежки) х2i (после пробежки) di (разница ЧСС)
     
     
     
     
     
     
Ср. знач.=70,8 Ср. знач.=79 Ср. знач.= 8,2

 

Несмотря на то, что средние значения ЧСС до и после пробежки отличаются, не исключена возможность, что в генеральной совокупности пробежка не повлияет на ЧСС.

Поэтому выдвигаем гипотезы:

Н(0): после пробежки ЧСС в среднем не меняется

Н(1): после пробежки ЧСС в среднем меняется

Гипотезы будем проверять на уровне значимости α=0,05.

Результаты вычислений представлены в таблице.

 

группа n (уд/мин) (уд/мин) sd (уд/мин2) вычисленный t -критерий
до пробежки   70,8 8,2 5,3 3,75
после пробежки  

 

Определим по таблице Стьюдента (Приложение 2) для α=0,05 и числа степеней свободы f=n- 1=5 двусторонний tкрит = 2,57.

│tвыч> tкрит – следовательно принимается Н(1).

Вывод: изменение ЧСС после пробежки статистически значимо с вероятностью не менее 95%.

 


 







Дата добавления: 2015-06-15; просмотров: 472. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия