Доверительный интервал
Любая выборка дает лишь приближенное представление о генеральной совокупности, и все выборочные статистические характеристики (средняя, мода, дисперсия…) являются некоторым приближением или говорят оценкой генеральных параметров, которые вычислить в большинстве случаев не представляется возможным из-за недоступности генеральной совокупности.
Но можно указать интервал, в котором с определенной долей вероятности лежит истинное (генеральное) значение статистической характеристики. Этот интервал называется доверительный интервал (ДИ). Так генеральное среднее значение с вероятностью 95% лежит в пределах
от до , где t – табличное значение критерия Стъюдента для α; =0,05 и f=n-1 Может быть найден и 99% ДИ, в этом случае t выбирается для α; =0,01. Какое практическое значение имеет доверительный интервал? · Широкий доверительный интервал показывает, что выборочная средняя неточно отражает генеральную среднюю. Обычно это связано с недостаточным объемом выборки, или же с ее неоднородностью, т.е. большой дисперсией. И то и другое дают большую ошибку среднего и, соответственно, более широкий ДИ. И это является основанием вернуться на этап планирования исследования. · Верхние и нижние пределы ДИ дают оценку, будут ли результаты клинически значимы Остановимся несколько подробнее на вопросе о статистической и клинической значимости результатов исследования групповых свойств. Вспомним, что задачей статистики является обнаружение хоть каких-либо отличий в генеральных совокупностях, опираясь на выборочные данные. Задачей клиницистов является обнаружение таких (не любых) различий, которые помогут диагностике или лечению. И не всегда статистические выводы являются основанием для клинических выводов. Так, статистически значимое снижение гемоглобина на 3 г/л не является поводом для беспокойства. И, наоборот, если какая-то проблема в организме человека не имеет массового характера на уровне всей популяции, это не основание для того, чтобы этой проблемой не заниматься.
|