На плоскость проекции Гаусса-Крюгера
Геодезические измерения (угловые и линейные) после их редуцирования на поверхность эллипсоида дают длины геодезических линий S, углы между ними b. Для перехода на плоскость проекции вычисляют длины прямоугольных отрезков, соединяющих изображения точек, а также углы между ними. Для редуцирования расстояний применяется формула а в измеренные направления вычисляются поправки по формулам где – величина, постоянная для всей территории Республики Беларусь и равна 0,002530, если координаты в формулах (4.8) выражают в километрах; – средний радиус кривизны эллипсоида, вычисленный по средней широте, для территории Республики Беларусь тоже можно считать постоянной величиной и равной 6,385×103 км. Если необходимо редуцировать углы треугольников сети триангуляции, то поправка в угол получается как разность поправок в направления (правое минус левое). Например, для данной сети имеем: Заметим, что максимальное значение поправок имеет место на краю зоны и на территории Республики Беларусь для шестиградусной зоны составляет dS £ 11 м, d £ 3² для длин сторон не более 20 км. Поправки в длины линий обусловлены масштабом изображения в проекции, а поправки в горизонтальные направления обусловлены кривизной изображения геодезических линий эллипсоида на плоскость проекции. Для перехода от геодезического азимута А12 на поверхности эллипсоида к дирекционному углу α12 на плоскости применяется формула Здесь g1 – сближение меридианов, выражающее угол между изображением меридиана данной точки на плоскость проекции с прямой, параллельной изображению осевого меридиана, вычисляется по формуле . Для параметров эллипсоида Красовского имеем рабочую формулу
|