Теорема (Формула Тейлора для функции нескольких переменных) Пусть функция задана в области и имеет в все частные производные до порядка включительно. Пусть и -- две точки области , такие что весь отрезок между ними целиком лежит в . Тогда для некоторой точки этого отрезка имеет место равенство
Сумма всех слагаемых в правой части формулы (9.6*), кроме записанных в последней строке, называется многочленом Тейлора функции в точке , а эта последняя строка содержитостаточный член формулы Тейлора. Считая его малым при небольших расстояниях между и (он имеет порядок , в то время как все остальные слагаемые -- порядок не выше , если не обращаются в 0), мы можем не учитывать остаточный член и, тем самым, получаем приближённую формулу
содержащую лишь значения функции и её частных производных, вычисленные в точке (но не в других точках ). Эту формулу можно использовать для приближённого вычисления значений функции в точках , близких к . На практике её применяют, ввиду большого числа слагаемых в правой части, лишь при небольших значениях , как правило, и .
При получается линейное приближение функции (нетрудно видеть, что правая часть совпадает с линейной функцией , графиком которой служит касательная плоскость, проведённая при к графику функции ):
При получается квадратичное приближение функции :
| (9.8)
|
Многочлен Тейлора в этом случае оказывается многочленом второй степени относительно переменных .