Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расширенная теорема о главном значении





Теорема (Формула Тейлора для функции нескольких переменных) Пусть функция задана в области и имеет в все частные производные до порядка включительно. Пусть и -- две точки области , такие что весь отрезок между ними целиком лежит в . Тогда для некоторой точки этого отрезка имеет место равенство

(9.6*)
 
 
(9.7)

Сумма всех слагаемых в правой части формулы (9.6*), кроме записанных в последней строке, называется многочленом Тейлора функции в точке , а эта последняя строка содержитостаточный член формулы Тейлора. Считая его малым при небольших расстояниях между и (он имеет порядок , в то время как все остальные слагаемые -- порядок не выше , если не обращаются в 0), мы можем не учитывать остаточный член и, тем самым, получаем приближённую формулу

 
 
 

содержащую лишь значения функции и её частных производных, вычисленные в точке (но не в других точках ). Эту формулу можно использовать для приближённого вычисления значений функции в точках , близких к . На практике её применяют, ввиду большого числа слагаемых в правой части, лишь при небольших значениях , как правило, и .

При получается линейное приближение функции (нетрудно видеть, что правая часть совпадает с линейной функцией , графиком которой служит касательная плоскость, проведённая при к графику функции ):

 

При получается квадратичное приближение функции :

(9.8)

Многочлен Тейлора в этом случае оказывается многочленом второй степени относительно переменных .







Дата добавления: 2015-06-15; просмотров: 460. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия