Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рассказать об операциях над множествами. Привести примеры





Ниже перечислены основные операции над множествами: 1) пересечение: Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4} 2) объединение: Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

3) разность (дополнение): Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}4) симметрическая разность: 4) Симметричной разностью множеств А и В Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Билет 4. Дать определение функции, обратной функции; сложной функции. Рассказать о нахождении обратной функции для функции y = sin x.

Если для любого значения Х принадлежащее к некоторому множеству по некоторому правилу f поставлена в соответствии единственное число Y, то зависимая переменная Y называется функцией независимо от Х и обозначается Y=f(x) (x ϵ X).

Если каждому значению из множества Y поставлена в соответствии по некоторому правилу Ҩ (фи) единственное число X, такое что f(x)=y, то функция X=Ҩ(y), (y ϵ Y) эта функция называется обратной Y=f(x) (x ϵ X).

y=sinX

Функция y=sinX на всей области определения обратной функции не имеет. y=sinX, х ϵ [- π/2; π/2] Так как обратная функция находится по правилу Ҩ (фи) и по формуле X=Ҩ(y) sin (arcsin Y0) = Y0.

Билет 5.







Дата добавления: 2015-06-15; просмотров: 406. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия