Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сформулировать свойства числовых последовательностей и проиллюстрировать их на примерах





1) Последовательность {yn} называют возрастающей, если каждый ее член (кроме первого) больше предыдущего. 2) Последовательность {yn} называют убывающей, если каждый ее член (кроме первого) меньше предыдущего. 3) Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T. Число T называется длиной периода. 4) Последовательность a1, a2, a3, … называется ограниченной, если для ее такое число С, что неравенство |an| C выполняется для всех номеров n.

Билет 12.

Дать определение предела числовой последовательности; определения бесконеч-но малых (б.м.) и бесконечно больших (б.б.) числовых последовательностей. Рас-сказать о связи б.м. и б.б. числовых последовательностей.

Число а называется пределом числовой последовательности{xn}, если для любого сколь угодного малого положительного числа £ существует номер n0 такой, что все элементы последовательности с номерами n>n0 удовлетворяющие неравенству |xn - a|< £.

Число а называется пределом числовой последовательности {xn}, тогда и только тогда, когда вне любой £-окрестности точки а находится лишь конечное число элементов этой последовательности

Если предел числовой последовательности конечный, то последовательность называется сходящейся. Если предел числовой последовательности бесконечный или не существует называется расходящейся.

Бесконечно малая числовая последовательность – это последовательность, предел которой равен нулю.

Хn = 1/n, n = 1,2…. – является бесконечно малой.

Бесконечно большая последовательность — это последовательность, предел которой равен бесконечности.

{Xn} = ∞

Связь бесконечно малой и большой числовой последовательности.







Дата добавления: 2015-06-15; просмотров: 460. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия