Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дать определение эквивалентных б.м. функций. Привести примеры применения этого определения при вычислении пределов, связанных с первым замечательным пределом





Если , то бесконечно малые величины и называются эквивалентными ().

Примеры использования.

Найти Заменяя эквивалентной величиной . Получаем:

Билет 21.

Вывести определение непрерывности функции в точке в терминах приращений. Используя это определение, доказать непрерывность функции .

∆y=f(x)-f(x0) – приращение данной функции в точке x0 ∆x=x-x0 – приращение аргумента. Отсюда lim∆y=0. Функция y = f(x) называется непрерывной в точке х0, если предел lim∆y=0 приращения функции в точке х0 равен 0 при стремлении приращения аргумента к 0.

y=sinx xϵ(-∞+∞) - непрерывна на всей числовой оси. Пусть любой х0ϵ(-∞+∞) lim∆y=0. Найдем приращение данной функции в точке х0. ∆y=sinx-sinx0 = 2sin(x-x0)/2•cos(x+x0)/2 = 2sin∆x/2•cos(x+x0)/2. Найдем предел приращения функции при стремлении приращения аргумента к 0.

lim∆y = lim2 • sin∆x/2 • cos(x+x0)/2 = lim2 • ∆x/2 • cos(x+x0)/2 = 0 • cosx0 = 0 → cos(x+x0) = cos2x0 lim∆y=0→данная функция непрерывна в точке х0 в силу произвольного выбора делаем выбор, что функция непрерывна на всей области определения.

Билет 22.







Дата добавления: 2015-06-15; просмотров: 551. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия