Средняя геометрическая
Применяется в тех случаях, когда общий объем усредняемого признака является мультипликативной величиной, т.е. определяется не суммированием, а умножением индивидуальных значений признака.
В социально-экономических исследованиях средняя геометрическая применяется в анализе рядов динамики при определении среднего коэффициента роста, когда задана последовательность относительных величин динамики. Рассмотрим пример: В результате инфляции за первый год цена товара возросла в 2 раза по сравнению к предыдущему году, а за второй ещё в 1,5 раза по сравнению к предыдущему. Необходимо определить средний коэффициент роста цены. За два года цена возросла в 3 раза (2·1,5). Если использовать среднюю арифметическую, то средний коэффициент роста составит В действительности средний коэффициент роста следует определить по формуле средней геометрической: Средняя геометрическая используется также для определения равноудаленной величины от максимального и минимального значения признака. Например, страховая фирма заключает договоры страхования имущества граждан. В зависимости от вида имущества, его состояния, категории фирмы, конкретного рискового случая и т. д. страховая сумма может изменяться от 3 тыс руб. до 1 млн. руб. Средняя сумма по страховке составит:
|