Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аналитический метод





Теоретической основой алгоритма отделения корней служит теорема Коши [11] о промежуточных значениях непрерывной функции:

Теорема 2.1. Если функция f (x) непрерывна на отрезке [ a, b ] и f (a) = A, f (b) = B, то для любой точки C, лежащей между A и B на этом отрезке существует точка , что f (ξ;) = C.

Следствие. Если функция f (x) непрерывна на отрезке [ a, b ] и на его концах принимает значения разных знаков, то на этом отрезке существует хотя бы один корень уравнения f (x) = 0.

Пусть область определения и непрерывности функции является конечным отрезком [ a, b ]. Разделим отрезок на n частей:

ak = a + kh, k = 0, 1, … n, h = (ba)/ n.

Вычисляя последовательно значения функции в точках a 0, a 1, … an, находим такие отрезки [ ak, ak +1], для которых выполняется условие

f (ak)∙ f (ak +1) < 0, (2.1)

т.е. f (ak) < 0, f (ak +1) > 0 или f (ak) > 0, f (ak +1) < 0. Эти отрезки и содержат хотя бы по одному корню.

Пример 2.1. Отделить корни уравнения sin5 x + x 2 – 1 = 0.

Решение. Построим таблицу значений функции y = sin5 x + x 2 – 1 на отрезке [–4; 4] с шагом изменения аргумента h = 1, пользуясь калькулятором или электронными таблицами (табл. 2.1).

Табл. 2.1

x –4 –3 –2 –1          
y 14,087 7,349 3,544 0,958 –1 –0,958 2,455 8,650 15,912

 

Табл. 2.1 показывает, что данное уравнение имеет корни в интервалах
(–1; 0) и (1; 2), так как функция меняет знак в этих промежутках. Пока мы не можем утверждать, что в найденных интервалах содержится ровно по одному корню и, что в других интервалах корней нет. Чтобы уточнить информацию о числе корней можно построить таблицу значений функции с меньшим шагом, например h = 0,1.

Теорема 2.2. Если непрерывная функция f (x) монотонна на отрезке
[ a, b ] и на его концах принимает значения разных знаков, то на этом отрезке существует единственный корень уравнения f (x) = 0.

Если функция f (x) дифференцируема и её производная сохраняет знак на отрезке [ a, b ], то f (x) монотонна на этом отрезке.

Если производная легко вычисляется и нетрудно определить её корни, то для отделения корней уравнения f (x) = 0 можно применить следующий алгоритм:

1) Найти критические точки, т.е. точки, в которых производная равна нулю или не существует, и определить интервалы знакопостоянства производной (на этих интервалах функция f (x) может иметь только по одному корню);

2) Составить таблицу знаков функции f (x), приравнивая переменную x критическим и граничным значениям, или близким к ним;

3) Определить отрезки, на концах которых функция принимает значения разных знаков.

Пример 2.2. Отделить корни уравнения sin x + x – 1 = 0.

Решение. Найдем производную функции f (x) = sin x + x – 1 и её корни:

 

 

Функция f (x) = sin x + x – 1 монотонна на отрезках [– π + 2π k, π + 2π k ]. Очевидно, что лишь отрезок [– π, π] содержит корень и он единственный.







Дата добавления: 2015-04-16; просмотров: 511. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия