Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретический материал. Во многих практических задачах возникает необходимость установить теоретический закон распределения случайной величины по опытному (эмпирическому)





Во многих практических задачах возникает необходимость установить теоретический закон распределения случайной величины по опытному (эмпирическому) распределению, представляющему вариационный ряд. Для этого надо определить вид и параметры закона распределения. Вид закона распределения можно предположить, исходя из теоретических предпосылок, графического изображения выборочного распределения и др. Параметры распределения, как правило, неизвестны, их заменяют наилучшими оценками.

Предположим, что известно эмпирическое распределение случайной величины Х, т.е. значения вариант и соответствующие им эмпирические частоты .

Далее, пусть есть основания предположить (выдвинуть гипотезу Н0), что случайная величина Х распределена нормально. Для проверки этой гипотезы, вычисляются так называемые выравнивающие частоты (т.е. частоты, которые должны иметь значения признака Х, если он распределен нормально) для тех же объектов, которые попали в выборку.

Между теоретическими и выравнивающими частотами неизбежны расхождения. Случайны ли эти расхождения или выдвинута неверная гипотеза о законе распределения? Для ответа на этот вопрос используются критерии согласия, например, c 2 (хи-квадрат) критерий К.Пирсона.

Схема применения c2 критерия К.Пирсона:

1. Выдвигаются проверяемая гипотеза Н0 – признак Х в генеральной совокупности распределен нормально с ,

– альтернативная гипотеза – признак в генеральной совокупности не распределен нормально.

2. Рассчитывается наблюдаемое значение критерия К.Пирсона:

,

где – выравнивающие частоты , n – объем выборки,

h – разность между двумя соседними вариантами,

и .

3. По таблице значений для заданного уровня значимости a и числа степеней свободы s (s=k-m-1, k -число различных вариант, m – число параметров распределения) находится c2 кр. Уровень значимости a представляет собой вероятность, при которой о событии (c2>c2 кр), имеющем вероятность a, можно с большой уверенностью сказать, что в единичном испытании оно не произойдет.

4. При c2>c2 кр гипотеза Н0 отвергается, при c2£c2 кр гипотеза Н0 не противоречит опытным данным.

 

 

Вопросы для подготовки к выполнению и защите работы:

1. Дать определение статистической гипотезы.

2. Описать общую схему проверки статистических гипотез.

3. Дать определение статистического критерия, уровня значимости критерия..

4. Описать схему проверки гипотезы о нормальном распределении изучаемого признака в генеральной совокупности.

5. Записать формулу критерия согласия Пирсона, указать его статистический смысл.

6. Указать смысл эмпирических, теоретических частот.

 

Задание к работе:

По данным, полученным в работах №1, 2, проверить гипотезу о нормальном распределении изучаемого признака в генеральной совокупности. Для этого:

1. Сформулировать нулевую и альтернативную гипотезы.

2. Рассчитать теоретические частоты и наблюдаемое значение критерия согласия Пирсона (значения функции определить из таблицы значений плотности вероятности для нормированного нормального закона распределения).

3. По таблице определить критическое значение критерия согласия Пирсона (уровень значимости принять равным 0,05).

4. Сравнить наблюдаемое и критическое значение критерия согласия Пирсона, сделать вывод о принятии (непринятии) проверяемой гипотезы.

5. Построить графики эмпирического и теоретического распределения.

6. Сделать вывод по работе.

 

 


Пример выполнения практической работы № 3 в Excel:

 

 

 

Пример оформления отчета по работе № 3 в тетради:







Дата добавления: 2015-04-16; просмотров: 738. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Studopedia.info - Студопедия - 2014-2026 год . (0.007 сек.) русская версия | украинская версия