Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 4. Параметрический резонанс





Внешнее воздействие на колебательную систему может сводиться к периодическому изменению параметров самой колебательной системы. Возбуждаемые таким образом колебания называются параметрическими, а сам механизм – параметрическим резонансом.

Прежде всего, попытаемся ответить на вопрос: можно ли раскачать уже имеющиеся в системе малые колебания, периодически изменяя определенным образом какой-либо ее параметр.

       
   
 

В качестве примера рассмотрим раскачивание человека на качелях. Сгибая и выпрямляя ноги в «нужные» моменты, он фактически изменяет длину маятника. В крайних положениях человек приседает, тем самым чуть-чуть опускает центр тяжести колебательной системы, в среднем положении человек выпрямляется, поднимая центр тяжести системы.

 

Чтобы понять, почему при этом человек раскачивается, рассмотрим предельно упрощенную модель человека на качелях – обычный небольшой маятник, то есть небольшой грузик на легкой и длинной нити. Чтобы имитировать поднимание и опускание центра тяжести, пропустим верхний конец нити через маленькое отверстие и будем вытягивать нить в те моменты, когда маятник проходит положение равновесия, и настолько же опускать нить, когда маятник проходит крайнее положение.

 
 

Подтягивая маятник в нижней точке траектории, мы совершаем положительную работу

В крайнем положении

 
 

Работа силы натяжения нити за период (с учетом того, что подъем груза и его опускание производится два раза за период и что D l << l):

 
 

 


 
 

Обратите внимание, что в скобках стоит не что иное, как утроенная энергия колебательной системы. Кстати, это величина положительная, следовательно, работа силы натяжения (наша работа) положительная, она приводит к увеличению полной энергии системы, а значит, к раскачке маятника.

Интересно, что относительное изменение энергии за период не зависит от того, слабо раскачивается маятник или сильно. Это очень важно, и вот почему. Если маятник «не подкачивать» энергией, то за каждый период он будет терять за счет силы трения определенную часть своей энергии, и колебания будут затухать. А чтобы размах колебаний увеличивался, необходимо, чтобы приобретаемая энергия превышала потерянную на преодоление трения. И это условие, оказывается, одно и то же – как при маленькой амплитуде, так и при большой.

Например, если за один период энергия свободных колебаний уменьшается на 6%, то для того, чтобы колебания маятника длиной 1 м не затухали, достаточно в среднем положении уменьшать его длину на 1 см, а в крайнем – на столько же увеличивать.

Возвращаясь к качелям: если вы начали раскачиваться, то нет необходимости приседать все глубже и глубже – приседайте все время одинаково, и будете взлетать все выше и выше!

*** Опять добротность!

Как мы уже сказали, для параметрической раскачки колебаний необходимо выполнение условия DЕ > Атрения за период.

Найдем работу силы трения за период

 
 

 


Видно, что относительная величина подъема маятника для его раскачки определяется добротностью системы.







Дата добавления: 2015-04-16; просмотров: 525. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия