Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

О сущности метода





Сущность метода Монте-Карло состоит в том, что искомая величина представляется в виде математического ожидания неко­торой случайной величины, математическое ожидание которой за­меняется средним арифметическим реализаций этой случайной ве­личины при большом числе испытаний, обычно проводимых на ЭВМ. При этом оценка погрешности метода сводится к интер­вальной оценке погрешности математического ожидания.

Особенностью метода является простая структура вычисли­тельного алгоритма, в соответствии с которым составляется про­грамма для проведения одного испытания, которое затем много­кратно повторяется. Именно поэтому метод Монте-Карло называ­ют еще и методом статистических испытаний.


6) 1. ПРОИЗВОДНАЯ КАК МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ФИЗИЧЕСКИХ, ТЕХНИЧЕСКИХ И ЭКОНОМИЧЕСКИХ ПОНЯТИЙ И ВЕЛИЧИН, ИХ ЗАВИСИМОСТЕЙ.

Рассмотрим общую задачу об определении мгновенной скорости движения точки, абсцисса которой есть функция времени: . Итак, в момент времени абсцисса точки равна , в момент времени её абсцисса будет , поэтому приращение абсциссы точки равно

= и .

Следовательно, первая производная от абсциссы движущейся точки по времени есть скорость (проекция скорости на ось – физический смысл производной), а вторая – т.е. проекция ускорения на ту же ось (физический смысл второй производной).

Аналогично, если – объём продукции, выпускаемой за время , то часть продукции , выпущенной за промежуток времени и отнесённая к , может быть истолкована как средняя производительность , а тогда под производительностью в данный момент времени естественно понимать производную , т.е. = (Экономический смысл производной).

Рисунок 11.2 – Модель стержня

Теперь рассмотрим задачу об определении плотности стержня в точке. Для этого (рисунок 11.2) левый конец стержня совместим с точкой а, правый – с точкой b и обозначим через абсциссу какой – либо точки этого стержня. Масса части стержня, расположенного левее точки , есть неубывающая функция и приращение , где равно массе участка стержня между точками и , а

есть средняя плотность распределения массы стержня на участке длиною . Переходя к пределу в последнем равенстве при , найдём плотность стержня в точке :

,

конечно при условии, что этот предел существует.

Решения приведённых задач по существу сводились к одной и той же операции: нахождению предела приращения функции к приращению аргумента, когда последнее стремится к нулю. Существует очень много прикладных и научных задач, результатом решения которых является указанный предел. Отвлекаясь от физического смысла участвующих в таких задачах величин, мы приходим к единству таких математических моделей, к математической модели, общей для всех таких задач. В рассматриваемом случае такой моделью является производная.


 

6) 2. ЭКОНОМИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ПРОИЗВЕДЕНИЯ МАТРИЦЫ-СТРОКИ НА МАТРИЦУ-СТОЛБЕЦ.

В экономике и других областях часто приходится иметь дело с прямоугольными таблицами, которым соответствуют такие математические модели как матрицы. В частности, каждый вектор можно рассматривать как матрицу, состоящую из одной строки и ли одного столбца, т.е. матрица является обобщением такого понятия как n мерный вектор. Именно поэтому матрице и операциям над матрицами можно дать экономическую интерпретацию, обобщающую аналогичную для n мерных векторов.

Итак, пусть k фабрик выпускают n различных видов продукции каждая. Тогда отчет о производстве за год всех k фабрик может быть описан с помощью матрицы (таблицы)

где aij - количество продукции j - го вида выпущенной i -й фабрикой за год. Выпуск

продукции, например, за 1, 2 года при сохранении производительности будет характеризоваться матрицей

Выпуск тех же n видов продукции другой группой из к фабрик, специализирующихся соответственно на той же продукции, будет характеризоваться второй матрицей В с элементами bij а совокупный продукт обеих групп фабрик может быть описан

матрицей А + В с элементами аij + bij.

Теперь укажем экономический смысл произведения матрицы строки на матрицу столбец, рассматривая множители как векторы, а результат - как скалярное произведение.

Тогда, учитывая обозначения компонентов векторов - ā и , можем написать равенство, в правой части которого получится величина, равная стоимости годового объема продукции фабрики. Отметим, что «скалярное» произведение «строки» на «столбец» дает «квадратную» матрицу первого порядка, т.е. число:


 







Дата добавления: 2015-04-16; просмотров: 498. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия