Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

О применении метода к проверке статистических гипотез





Рассмотрим задачу по проверке гипотезы о вероятности со­бытия. Выдвигая статистическую гипотезу о вероятности события А: Р(А) = Pо, проведём п испытаний (n>10).

Тогда, используя оценку частоты по вероятности с надежно­стью 0,997, т. е. с вероятностью выполнения правила нормаль­но распределенной случайной величины, будем иметь неравенство

Если это неравенство выполняется, то с надежностью 0,997 гипотеза не противоречит экспериментальным данным, в против­ном случае гипотеза отклоняется.

Пример. Проверить гипотезу о том, что любая последняя циф­ра номеров телефонов, помещенных в телефонном справочнике города, имеет вероятность 0,1.

Гипотеза P(A)= =0,1.

Запишем неравенства

Пусть п = 16. Тогда .

Для проверки гипотезы воспользуемся той же выборкой: 6; 9; 3; 1;5;3; 8; 4; 7; 6; 0; 2: 4; 7; 8; 9.

Теперь легко видеть, что каждая цифра встречается в ней не более 5 раз. Поэтому гипотеза не противоречит эксперименталь­ным данным.

Не менее полезно проведение натурных экспериментов, ко­торые позволяют убедиться в том, что модельные результаты со­гласуются с данными опытов. Сравним, например вероятность вы­падения герба и цифры при подбрасывании двух монет с её эмпи­рическим аналогом - относительной частотой, определяемой экс­периментально. Теоретическая, идеализированная частота, т.е. ве­роятность, в этом случае равна 0,5. Экспериментальное решение можно получить так: каждый слушатель из группы, например в 25 человек, десять раз подбрасывает две монеты, и регистрирует, сколько раз выпали герб и цифра. Всего, таким образом, будет проведено 250 опытов, примерно в половине которых выпадет герб и цифра, а потому относительная частота указанного события 0,5.

В этой связи заметим, что Даламбер, как пишут в некоторых книгах, считал: при подбрасывании двух монет три события - вы­падение двух гербов, двух цифр, а также одного герба и одной цифры - равновозможны. Если бы это было так, то относительная частота выпадения герба и цифры равнялась бы примерно 1/3. Но как было отмечено выше, относительная частота выпадения герба и цифры, получаемая на основе опыта близка к 0,5. Таким обра­зом, гипотеза Даламбера неверна. (Правда, трудно поверить, чтобы он мог её высказать).







Дата добавления: 2015-04-16; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия