Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поиск экстремума функции двух переменных





Точка М000) наз-ся точкой максимума (минимума) ф-ии z=f(х;у) если сущ-ет окрестность точки М такая, что для всех точек (х;у) из этой окрестности выполняется нер-во: f(x0;y0)≥ f(х;у); f(x0;y0)≤ f(х;у)

Т.(необх.усл.экстр.) Пусть точка М000) – есть точка экстремума, дифференцируемой ф-ии z=f(х;у). Тогда частные производные zx и zy в этой точке равны нулю

Если частные производные и сами яв-ся дифференцируемыми фун-ми то можно найти такие и их частные производные,которые наз-ся частными производными второго порядка (f`xx, f`xy, f`yx, f`yy)

Т. (достат.усл.экстр.) Пусть ф-ия z=f(x;y):

1. Определена в некоторой окрестности стационарной точки (x0;y0) в которой z`x=0 и z`y=0

2. Имеет в этой точке непрерывные частные производные второго порядка f`xx (x0; y0) = A,

f`xy(x0; y0) = f`yx(x0; y0) = B и f`yy(x0; y0) =C

Тогда если =АС-В2˃0, то в точке (x0; y0) ф-ия имеет экстремум, причём если А<0 – максимум, если А˃0 – минимум. В случае =АС-В2<0 ф-ия экстремума не имеет.

Если = АС-В2=0, то вопрос о наличии экстремума остается открытым.

Схема исследования ф-ий двух переменных на наличие экстремума:

1. Найти частные производные z`x и z`y

2. Решить систему уравнений z`x=0 и z`y=0 и найти стационарные точки ф-ии.

3. Найти частные производные второго порядка, вычислить их значение в каждой стационарной точек и с помощью достаточного условия сделать вывод о наличии экстремумов







Дата добавления: 2015-04-16; просмотров: 452. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия