Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поиск экстремума функции двух переменных





Точка М000) наз-ся точкой максимума (минимума) ф-ии z=f(х;у) если сущ-ет окрестность точки М такая, что для всех точек (х;у) из этой окрестности выполняется нер-во: f(x0;y0)≥ f(х;у); f(x0;y0)≤ f(х;у)

Т.(необх.усл.экстр.) Пусть точка М000) – есть точка экстремума, дифференцируемой ф-ии z=f(х;у). Тогда частные производные zx и zy в этой точке равны нулю

Если частные производные и сами яв-ся дифференцируемыми фун-ми то можно найти такие и их частные производные,которые наз-ся частными производными второго порядка (f`xx, f`xy, f`yx, f`yy)

Т. (достат.усл.экстр.) Пусть ф-ия z=f(x;y):

1. Определена в некоторой окрестности стационарной точки (x0;y0) в которой z`x=0 и z`y=0

2. Имеет в этой точке непрерывные частные производные второго порядка f`xx (x0; y0) = A,

f`xy(x0; y0) = f`yx(x0; y0) = B и f`yy(x0; y0) =C

Тогда если =АС-В2˃0, то в точке (x0; y0) ф-ия имеет экстремум, причём если А<0 – максимум, если А˃0 – минимум. В случае =АС-В2<0 ф-ия экстремума не имеет.

Если = АС-В2=0, то вопрос о наличии экстремума остается открытым.

Схема исследования ф-ий двух переменных на наличие экстремума:

1. Найти частные производные z`x и z`y

2. Решить систему уравнений z`x=0 и z`y=0 и найти стационарные точки ф-ии.

3. Найти частные производные второго порядка, вычислить их значение в каждой стационарной точек и с помощью достаточного условия сделать вывод о наличии экстремумов







Дата добавления: 2015-04-16; просмотров: 452. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия