Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема. (Достаточные условия экстремума)





Пусть в окрестности критической точки (х0, у0) функция f(x, y) имеет непрерывные частные производные до второго порядка включительно. Рассмотрим выражение:

1) Если D(x0, y0) > 0, то в точке (х0, у0) функция f(x, y) имеет экстремум, если

- максимум, если - минимум.

2) Если D(x0, y0) < 0, то в точке (х0, у0) функция f(x, y) не имеет экстремума

В случае, если D = 0, вывод о наличии экстремума сделать нельзя.

 

 

Условный экстремум.

 

Условный экстремум находится, когда переменные х и у, входящие в функцию u = f(x, y), не являются независимыми, т.е. существует некоторое соотношение

j(х, у) = 0, которое называется уравнением связи.

Тогда из переменных х и у только одна будет независимой, т.к. другая может быть выражена через нее из уравнения связи.

Тогда u = f(x, y(x)).

В точках экстремума:

=0 (1)

Кроме того:

(2)

Умножим равенство (2) на число l и сложим с равенством (1).

 

 

 

Для выполнения этого условия во всех точках найдем неопределенный коэффициент l так, чтобы выполнялась система трех уравнений:

Полученная система уравнений является необходимыми условиями условного экстремума. Однако это условие не является достаточным. Поэтому при нахождении критических точек требуется их дополнительное исследование на экстремум.

Выражение u = f(x, y) + lj(x, y) называется функцией Лагранжа.

Пример. Найти экстремум функции f(x, y) = xy, если уравнение связи:

2x + 3y – 5 = 0

 

Таким образом, функция имеет экстремум в точке .

Использование функции Лагранжа для нахождения точек экстремума функции называется также методом множителей Лагранжа.

Выше мы рассмотрели функцию двух переменных, однако, все рассуждения относительно условного экстремума могут быть распространены на функции большего числа переменных.

 

Производная по направлению.

 

 

Рассмотрим функцию u(x, y, z) в точке М(x, y, z) и точке М1(x + Dx, y + Dy, z + Dz).

Проведем через точки М и М1 вектор . Углы наклона этого вектора к направлению координатных осей х, у, z обозначим соответственно a, b, g. Косинусы этих углов называются направляющими косинусами вектора .

Расстояние между точками М и М1 на векторе обозначим DS.

 

 

Высказанные выше предположения, проиллюстрируем на рисунке:

z

 

M

 

 

 

M1

 

y

 

x

 

Далее предположим, что функция u(x, y, z) непрерывна и имеет непрерывные частные производные по переменным х, у и z. Тогда правомерно записать следующее выражение:

 

,

 

где величины e1, e2, e3 – бесконечно малые при .

Из геометрических соображений очевидно:

 

 

Таким образом, приведенные выше равенства могут быть представлены следующим образом:

 

;

 

 

 

Заметим, что величина s является скалярной. Она лишь определяет направление вектора .

Из этого уравнения следует следующее определение:

 

 

Определение: Предел называется производной функции u(x, y, z) по направлению вектора в точке с координатами (x, y, z).

 

Поясним значение изложенных выше равенств на примере.

 

 

Пример. Вычислить производную функции z = x2 + y2x в точке А(1, 2) по направлению вектора . В (3, 0).

 

Решение. Прежде всего необходимо определить координаты вектора .

 

=(3-1; 0-2) = (2; -2) = 2 .

Далее определяем модуль этого вектора:

 

=

Находим частные производные функции z в общем виде:

 

Значения этих величин в точке А:

 

Для нахождения направляющих косинусов вектора производим следующие преобразования:

=

За величину принимается произвольный вектор, направленный вдоль заданного вектора, т.е. определяющего направление дифференцирования.

Отсюда получаем значения направляющих косинусов вектора :

cosa = ; cosb = -

 

Окончательно получаем: - значение производной заданной функции по направлению вектора .

 

Градиент.

 

Определение: Если в некоторой области D задана функция u = u(x, y, z) и некоторый вектор, проекции которого на координатные оси равны значениям функции u в соответствующей точке

,

то этот вектор называется градиентом функции u.

 

 

При этом говорят, что в области D задано поле градиентов.

 

 

Связь градиента с производной по направлению.

 

Теорема: Пусть задана функция u = u(x, y, z) и поле градиентов

.

Тогда производная по направлению некоторого вектора равняется проекции вектора gradu на вектор .

 

 

Доказательство: Рассмотрим единичный вектор и некоторую функцию u = u(x, y, z) и найдем скалярное произведение векторов и gradu.

Выражение, стоящее в правой части этого равенства является производной функции u по направлению s.

Т.е. . Если угол между векторами gradu и обозначить через j, то скалярное произведение можно записать в виде произведения модулей этих векторов на косинус угла между ними. С учетом того, что вектор единичный, т.е. его модуль равен единице, можно записать:

Выражение, стоящее в правой части этого равенства и является проекцией вектора gradu на вектор .

 

Теорема доказана.

 

Для иллюстрации геометрического и физического смысла градиента скажем, что градиент – вектор, показывающий направление наискорейшего изменения некоторого скалярного поля u в какой- либо точке. В физике существуют такие понятия как градиент температуры, градиент давления и т.п. Т.е. направление градиента есть направление наиболее быстрого роста функции.

С точки зрения геометрического представления градиент перпендикулярен поверхности уровня функции.

 

Кратные интегралы.

Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.

 

Двойные интегралы.

 

Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой

f(x, y) = 0.

 

y

 

0 x

 

 

Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью D. Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой область D.

С геометрической точки зрения D - площадь фигуры, ограниченной контуром.

 

Разобьем область D на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние Dхi, а по оси у – на Dуi. Вообще говоря, такой порядок разбиения наобязателен, возможно разбиение области на частичные участки произвольной формы и размера.

 

Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны Si = Dxi × Dyi.

 

В каждой частичной области возьмем произвольную точку Р(хi, yi) и составим интегральную сумму

где f – функция непрерывная и однозначная для всех точек области D.

Если бесконечно увеличивать количество частичных областей Di, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.

 

Определение: Если при стремлении к нулю шага разбиения области D интегральные суммы имеют конечный предел, то этот предел называется двойным интегралом от функции f(x, y) по области D.

 

 

С учетом того, что Si = Dxi × Dyi получаем:

 

 

В приведенной выше записи имеются два знака S, т.к. суммирование производится по двум переменным х и у.

Т.к. деление области интегрирования произвольно, также произволен и выбор точек Рi, то, считая все площади Si одинаковыми, получаем формулу:

 

 

 

Условия существования двойного интеграла.

 

Сформулируем достаточные условия существования двойного интеграла.

 

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, то двойной интеграл существует.

 

 

Теорема. Если функция f(x, y) ограничена в замкнутой области D и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл существует.

 

Свойства двойного интеграла.

 

 

1)

 

2)

 

3) Если D = D1 + D2, то

 

4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования.

 

 

5) Если f(x, y) ³ 0 в области D, то .

 

6) Если f1(x, y) £ f2(x, y), то .

 

7) .

 

Вычисление двойного интеграла.

 

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями х = a, x = b, (a < b), y = j(x), y = y(x), где j и y - непрерывные функции и

j £ y, тогда

 

y y = y(x)

 


D

 

y = j(x)

 

a b x

 

Пример. Вычислить интеграл , если область D ограничена линиями: y = 0, y = x2, x = 2.

y

 

D

 

0 2 x

 

 

=

=

 

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями y = c, y = d (c < d), x = F(y), x = Y(y) (F(y) £ Y(y)), то

 

Пример. Вычислить интеграл , если область D ограничена линиями y = x, x = 0, y = 1, y = 2.

y


y = x

D

 

0 x

 

 

 

Пример. Вычислить интеграл , если область интегрирования D ограничена линиями х = 0, х = у2, у = 2.

 

=

=

 

 

Пример. Вычислить двойной интеграл , если область интегрирования ограничена линиями ху=1, у = , х = 2.

 

 

1.

 

2.

 

 

 

 

3.

 

 

Замена переменных в двойном интеграле.

Расмотрим двойной интеграл вида , где переменная х изменяется в пределах от a до b, а переменная у – от j1(x) до j2(х).

Положим х = f(u, v); y = j(u, v)

 

Тогда dx = ; dy = ;

 

 

 

т.к. при первом интегрировании переменная х принимается за постоянную, то dx = 0.

 

, т.е.

пожставляя это выражение в записанное выше соотношение для dy, получаем:

 

Выражение называется определителем Якоби или Якобианом функций f(u, v) и j(u, v).

 

(Якоби Карл Густав Якоб – (1804-1851) – немецкий математик)

 

Тогда

Т.к. при первом интегрировании приведенное выше выражение для dx принимает вид (при первом интегрировании полагаем v = const, dv = 0), то при изменении порядка интегрирования, получаем соотношение:

 

Двойной интеграл в полярных координатах.

Воспользуемся формулой замены переменных:

При этом известно, что

В этом случае Якобиан имеет вид:

 

 

 

Тогда

Здесь t - новая область значений,

 

 

Тройной интеграл.

 

При рассмотрении тройного инеграла не будем подробно останавливаться на всех тех теоретических выкладках, которые были детально разобраны применительно к двойному интегралу, т.к. существенных различий между ними нет.

Единственное отличие заключается в том, что при нахождении тройного интеграла интегрирование ведется не по двум, а по трем переменным, а областью интегрирования является не часть плоскости, а некоторая область в техмерном пространстве.

 

 

 

Суммирование производится по области v, которая ограничена некоторой поверхностью j(x, y, z) = 0.

 

 

Здесь х1 и х2 – постоянные величины, у1 и у2 – могут быть некоторыми функциями от х или постоянными величинами, z1 и z2 – могут быть функциями от х и у или постоянными величинами.

 

 

Пример. Вычислить интеграл

 

Замена переменных в тройном интеграле.

 

Операция замены переменных в тройном интеграле аналогична соответсвующей операции для двойного интеграла.

Можно записать:

 

Наиболее часто к замене переменной в тройном интеграле прибегают с целью перейти от декартовой прямоугольной системы координат к цилиндрической или сферической системе.

Рассмотрим эти преобразования подробнее.

 

Цилиндрическая система координат.

 

z

 

 

P

 

z

 

q x

r

 

 

y

 

Связь координат произвольной точки Р пространства в цилиндрической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:

 

Для представления тройного интеграла в цилиндрических координатах вычисляем Якобиан:

 

 

 

Итого:

 

Сферическая система координат.

 

 

z

 

 

P

 

r

j

 

0 q x

 

y

Связь координат произвольной точки Р пространства в сферической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:

 

Для представления тройного интеграла в сферических координатах вычисляем Якобиан:

Окончательно получаем:

 

Геометрические и физические приложения кратных интегралов.

1) Вычисление площадей в декартовых координатах.

 

y

y = j(x)

 

 

S

 

 

y = f(x)

a b x

 

Площадь S, показанная на рисунке может быть вычислена с помощью двойного интеграла по формуле:

 

 

Пример. Вычислить площадь фигуры, ограниченной линиями y2 = 4x + 4;

x + y – 2 = 0.

Построим графики заданных функций:

 

 

Линии пересекаются в двух точках – (0, 2) и (8, -6). Таким образом, область интегрирования ограничена по оси Ох графиками кривых от до х = 2 – у, а по оси Оу – от –6 до 2. Тогда искомая площадь равна:

S =

 

 

2) Вычисление площадей в полярных координатах.

 

 

 

3) Вычисление объемов тел.

 

 

Пусть тело ограничено снизу плосткостью ху, а сверху– поверхностью z = f(x,y),

а с боков – цилиндрической поверхностью.

 

Такое тело называется цилиндроид.

 

 

z

 

z = f(x, y)

 

x1 y1 x2

 

x

y2

 

 

y

 

V =

 

 

Пример. Вычислить объем, ограниченный поверхностями: x2 + y2 = 1;

x + y + z =3 и плоскостью ХОY.

 

Пределы интегрирования: по оси ОХ:

по оси ОY: x1 = -1; x2 = 1;

 

 

4) Вычисление площади кривой поверхности.

 

Если поверхность задана уравнением: f(x, y, z) = 0, то площадь ее поверхности находится по формуле:

 

Если поверхность задана в неявном виде, т.е. уравнением z = j(x, y), то площадь этой поверхности вычисляется по формуле:

 

 

 

5)Вычисление моментов инерции площадей плоских фигур.

 

Пусть площадь плоской фигуры (область D) ограничена линией, уравнение которой f(x,y) = 0. Тогда моменты инерции этой фигуры находятся по формулам:

 

- относительно оси Ох:

- относительно оси Оу:

- относительно начала координат: - этот момент инерции называют еще полярным моментом инерции.

 

 

6) Вычисление центров тяжести площадей плоских фигур.

 

Координаты центра тяжести находятся по формулам:

 

здесь w – поверхностная плотность (dm = wdydx – масса элемента площади).

 

7) Вычисление объемов тел с помощью тройного интеграла.

 

Если поверхность тела описывается уравнением f(x, y, z) = 0, то объем тела может быть найден по формуле:

при этом z1 и z2 – функции от х и у или постоянные, у1 и у2 – функции от х или постоянные, х1 и х2 – постоянные.

 

 

8) Координаты центра тяжести тела.

 

 

9) Моменты инерции тела относительно осей координат.

 

 

10) Моменты инерции тела относительно координатных плоскостей.

 

 

11) Момент инерции тела относительно начала координат.

 

 

В приведенных выше формулах п.п. 8 – 11 r – область вычисления интеграла по объему, w – плотность тела в точке (х, у, z), dv – элемент объема

- в декартовых координатах: dv = dxdydz;

- в циллиндрических координатах: dv = rdzdjdq;

- в сферических координатах: dv = r2sinjdrdjdq.

 

 

12) Вычисление массы неоднородного тела.

 

Теперь плотность w – величина переменная.

 

Ряды.

 

Основные определения.

Определение. Сумма членов бесконечной числовой последовательности называется числовым рядом.

При этом числа будем называть членами ряда, а un – общим членом ряда.

 

Определение. Суммы , n = 1, 2, … называются частными (частичными) суммами ряда.

Таким образом, возможно рассматривать последовательности частичных сумм ряда S1, S2, …,Sn, …

Определение. Ряд называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

 

Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

 

Свойства рядов.

 

1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

2) Рассмотрим два ряда и , где С – постоянное число.

Теорема. Если ряд сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна СS. (C ¹ 0)

 

3) Рассмотрим два ряда и . Суммой или разностью этих рядов будет называться ряд , где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Теорема. Если ряды и сходятся и их суммы равны соответственно S и s, то ряд тоже сходится и его сумма равна S + s.

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

 

 

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

 

Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

.

 

Доказательство. (необходимость)

Пусть , тогда для любого числа найдется номер N такой, что неравенство

выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство . Учитывая оба неравенства, получаем:

Необходимость доказана. Доказательство достаточности рассматривать не будем.

Сформулируем критерий Коши для ряда.

 

Для того, чтобы ряд был сходящимся необходимо и достаточно, чтобы для любого существовал номер N такой, что при n>N и любом p>0 выполнялось бы неравенство

.

 

Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:

 

1) Если ряд сходится, то необходимо, чтобы общий член un стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд является расходящимся, хотя его общий член и стремится к нулю.

 

Пример. Исследовать сходимость ряда

Найдем - необходимый признак сходимости не выполняется, значит ряд расходится.

 

2) Если ряд сходится, то последовательность его частных сумм ограничена.

Однако, этот признак также не является достаточным.

Например, ряд 1-1+1-1+1-1+ … +(-1)n+1+… расходится, т.к. расходится последовательность его частных сумм в силу того, что

Однако, при этом последовательность частных сумм ограничена, т.к. при любом n.

 

 

Ряды с неотрицательными членами.

 

При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

 

Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.

 

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда и при un, vn ³ 0.

 

Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

 

Доказательство. Обозначим через Sn и sn частные суммы рядов и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

 

Пример. Исследовать на сходимость ряд

Т.к. , а гармонический ряд расходится, то расходится и ряд .

 

Пример. Исследовать на сходимость ряд

Т.к. , а ряд сходится (как убывающая геометрическая прогрессия), то ряд тоже сходится.

 

Также используется следующий признак сходимости:

Теорема. Если и существует предел , где h – число, отличное от нуля, то ряды и ведут одинаково в смысле сходимости.

 

Признак Даламбера.

(Жан Лерон Даламбер (1717 – 1783) – французский математик)

 

Если для ряда с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

то ряд сходится, если же для всех достаточно больших n выполняется условие

то ряд расходится.

Предельный признак Даламбера.

 

Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.

Если существует предел , то при r < 1 ряд сходится, а при r > 1 – расходится. Если r = 1, то на вопрос о сходимости ответить нельзя.

 

 

Пример. Определить сходимость ряда .

Вывод: ряд сходится.

 

 

Пример. Определить сходимость ряда

Вывод: ряд сходится.

 

 

Признак Коши. (радикальный признак)

 

Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

,

то ряд сходится, если же для всех достаточно больших n выполняется неравенство

то ряд расходится.

 

 

Следствие. Если существует предел , то при r<1 ряд сходится, а при r>1 ряд расходится.

 

Пример. Определить сходимость ряда .

Вывод: ряд сходится.

Пример. Определить сходимость ряда .

Т.е. признак Коши не дает ответа на вопрос о сходимос







Дата добавления: 2015-04-16; просмотров: 568. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия