Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема 7.2. Абсолютная погрешность алгебраической суммы нескольких приближённых чисел не превышает суммы абсолютных погрешностей слагаемых





Доказательство. Пусть - точные значения, - приближающие их числа. Тогда

, по свойству 2 абсолютной величины, что и требовалось доказать.

Это утверждение означает, что . Поэтому обычно правую часть этого неравенства и принимают за оценку абсолютной погрешности суммы. Таким образом, абсолютная погрешность суммы оказывается не меньше, чем наибольшая из абсолютных погрешностей слагаемых. Следовательно, не имеет смысла сохранять излишние знаки и в более точных слагаемых.

Итак, при сложении приближённых чисел используется такое простое правило. Во-первых, следует найти числа, десятичная запись которых содержит наименьшее количество знаков после запятой. Остальные числа округлить так же, как найденные выше, взяв ещё один лишний знак. Произвести сложение полученных округлённых чисел и округлить результат.

Сложим, для примера, числа Ясно, что точность вычисления определяется вторым слагаемым. Поэтому, в соответствии с выписанным выше правилом, сохраним первое и второе числа и округлим третье следующим образом: . Тогда первое и третье слагаемые дадут в сумме . Добавление второго слагаемого приведёт к . Из этого следует, что верными цифрами суммы будут первые три её цифры.







Дата добавления: 2015-04-16; просмотров: 515. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия