Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 6. ПРЕДЕЛЬНЫЕ ТОЧКИ





Определение 6.1. Окрестностью точки a называется любой интервал, содержащий точку a. Чаще всего рассматривают симметричную окрестность радиуса , . Проколотой окрестностью точки a называется окрестность точки a, из которой исключена сама точка a, т.е. .

Определение 6.2. a - предельная точка множества A, если в любой проколотой окрестности точки a есть точки из множества A: .

В определении не сказано, что . В приведенных ниже примерах встретятся ситуации, и когда предельная точка а множества А принадлежит самому множеству А, и когда она не принадлежит множеству А.

Пример 1. Пусть . Любая точка с, не принадлежащая этому отрезку, не является предельной точкой (см. рис.1).

 
 

 


x
[() (]) a b (рис. 2)    
Для любой можно указать окрестность точки с, не пересекающуюся с .

 

Любая окрестность любой точки имеет непустое пересечение с см. рис.2

Итак, множеством предельных точек отрезка является сам отрезок. Он содержит все свои предельные точки.

Определение 6.3. Множество, содержащее все свои предельные точки, называется замкнутым.

Пример 2. Пусть . Как и выше, если , то с не является предельной точкой А.

 

Но любая окрестность любой точки имеет непустое пересечение с ,

 

Поэтому множеством предельных точек интервала является отрезок . В этом случае концы a, b этого отрезка – предельные точки , не принадлежащие .







Дата добавления: 2015-04-16; просмотров: 556. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия