Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Целые числа





Потребности в вычислениях не позволяют ограничиться только натуральными числами. Естественно дополнить натуральные числа числом 0 и отрицательными числами. Число 0, по определению, обладает следующими свойствами: для любого натурального числа выполняются равенства .

Нетрудно доказать, что 0 определяется этими свойствами единственным образом..В самом деле, если мы предположим, что есть два элемента, обладающих указанными свойствами, например, , то получим, что .

Точно также, для произвольного натурального числа определим противоположное ему число как такое, что выполняется равенство , т.е. как решение уравнения Натуральные числа, им противоположные числа и число 0 образуют новое множество, называемое множеством целых чисел. Множество целых чисел обозначается Z.

Мы не будем подробно останавливаться на том, как операции сложения и умножения и отношение неравенства переносятся с множества натуральных чисел на множество целых чисел, считая это известным, а просто перечислим свойства целых чисел.Сложение целых чисел обладает следующими свойствами:

1. (ассоциативность, или сочетательный закон).

2. (коммутативность, или переместительный закон).

3. Существует нейтральный элемент по сложению, называемый 0, такой, что для любого целого числа выполняются равенства .

4. Для произвольного целого числа существует противоположное ему число такое, что выполняется равенство .

Свойство 4 позволяет определить на множестве целых чисел операцию вычитания с помощью равенства .

С алгебраической точки зрения эти свойства означают, что множество целых чисел с введённой на нём операцией сложения образует коммутативную группу

 

Умножение целых чисел обладает следующими свойствами:

1. (ассоциативность, или сочетательный закон).

2. (коммутативность, или переместительный закон).

3. (дистрибутивность умножения относительно сложения, или

распределительный закон).

4. Существует нейтральный элемент по умножению такой, что для любого .

С алгебраической точки зрения эти свойства означают, что множество целых чисел с введёнными на нём операциями сложения умножения образует кольцо

Для целых чисел естественно вводится отношение порядка меньше или равно, обозначаемое , и для любых чисел либо , либо .

Отношение порядка обладает такими свойствами:

1. Если одновременно и , то .

2. Если и , то .

3. Если , то для всех выполняется: .

4. Если , то для всех натуральных выполняется: , а для всех отрицательных целых чисел - противоположное неравенство .

Для целых чисел можно определить понятие делимости. Говорят, что целое число делится на целое число без остатка, если существует целое число такое, что .(Обычно это обозначают следующим образом: .) Число называется делимым, число – делителем, число – частным от деления. Если же не делится на число без остатка, то его можно единственным образом представить в виде , где .

Тем самым, мы получили равенство , верное при .

Зафиксируем произвольное целое число и назовём два целых числа сравнимыми по модулю (что обозначается ), если разность делится на . Легко видеть, определённое таким образом отношение обладает всеми свойствами отношения эквивалентности. Классы эквивалентности называются классами вычетов по модулю , в качестве системы представителей можно взять всевозможные остатки от деления на , т.е. числа . Это множество обозначается Z .

Сумму вычетов и определяем, как остаток от деления на числа , произведение вычетов и определяем, как остаток от деления на числа . Операции над вычетами обладают теми же свойствами, что и операции над целыми числами.







Дата добавления: 2015-04-16; просмотров: 535. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия