Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 8. Предел последовательности. Предел функции. Бесконечно малые величины .Арифметические свойства предела





Определение 8.1 Если каждому сопоставлено число , то говорят, чтозадана последовательность

Некоторые последовательности обладают очень важным свойством – они имеют предел.

Определение 8.2 Последовательность имеет предел, равный числу A тогда и только тогда, когда для любого существует число такое, что для всех , удовлетворяющих неравенству , выполняется неравенство .

Удобно записывать это определение с помощью логических символов: .

Для обозначения предела последовательности используется символ: .

Примеры. 1) Если для всех n, то

Доказательство. Для любого и любого , и любого n .

2) Если , то

Доказательство. Пусть . Возьмем . Тогда если , то и , поэтому .

Пусть определена в некоторой проколотой окрестности точки а.

Определение 8.3 Функция имеет при предел, равный числу А тогда и только тогда, когда для любой окрестности точки А существует проколотая окрестность точки а такая, что , или, равносильно, такая, что для любого . С помощью логических символов это определение записывается так:

Данное определение называется определением предела по Коши.

В этом определении можно вместо произвольной рассматривать при произвольном и, соответственно, вместо - проколотую окрестность . Тогда оно примет вид: .

Вспоминая, что условие равносильно неравенствам , а условие равносильно условию , получаем равносильную определению 8.3 запись определения предела на "языке ":







Дата добавления: 2015-04-16; просмотров: 403. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия