Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема 8.1





1) Если предел последовательности существует, то он единственен, т.е. если и если , то

2) Если предел функции имеет при существует, то он единственен, т.е. , , то

Доказательство. 1) Предположим, что последовательность имеет пределом число , а также имеет пределом число , . Тогда:

Полагая в этом условии , получаем, что при . Аналогично, поскольку - тоже предел, получаем, что при .

Пусть . Тогда при выполняются условия и , поэтому

Полученное противоречие доказывает теорему.

2)Утверждение этой теоремы доказывается вполне аналогично, но оно будет приведено ниже для полноты изложения. Пусть снова функция имеет при два предела, и . Тогда, применяя определения предела при получаем, чтодля существуют числа и такие, что при выполняется неравенство , а при выполняется неравенство . Тогда положим и потребуем, чтобы . При этом

Полученное противоречие доказывает теорему.

Определение 8.4 Последовательность называется бесконечно малой, если . Аналогично, функция - бесконечно малая при , если .







Дата добавления: 2015-04-16; просмотров: 983. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия