Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема 11.1 Существует предел последовательности





Доказательство. Сначала докажем лемму

Лемма 11.1. (неравенство Бернулли):

Если , то .

Доказательство. Используем метод математической индукции. При имеем: . Предположим, что при неравенство верно: . Тогда при имеем: . Неравенство доказано.

Чтобы доказать существование предела , рассмотрим последовательность . Для членов этой последовательности:

Применим неравенство Бернулли, обозначив , при этом очевидно, что . 1. Таким образом, . Так как , то , поэтому рассматриваемая последовательность убывает и ограничена снизу. Значит, существует предел . Так как , то и . Следовательно, . Таким образом, .

Теорема 11.2 Имеет место равенство

.

Доказательство. (НА ЭКЗАМЕНЕ НЕОБЯЗАТЕЛЬНО ЕГО ЗНАТЬ. ПРИВЕДЕНО ДЛЯ ИНТЕРЕСУЮЩИХСЯ МАТЕМАТИКОЙ)

  1. Докажем сначала, что .

Обозначим за n целую часть отношения . . Тогда справедливо неравенство: . Перепишем его в виде . Тогда . При этом , . В полученном неравенстве левая и правая части стремятся к e, т.к. .

Таким образом, по теореме “о зажатой переменной” 9.3. получаем, что .

  1. Докажем теперь, что .

Обозначим . Получаем, что . Выражение при . Обозначив получаем, что . Тогда . Полученное выражение стремится к e при , т.к. . Теорема доказана.







Дата добавления: 2015-04-16; просмотров: 631. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия