Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема 12.5. Определение 8.3, т.е. определение предела по Коши, равносильно определению 12.3 предела по Гейне





◄ Пусть сначала функция имеет предел по Коши. Рассмотрим произвольную последовательность такую, что и такую, что для всех выполнено неравенство . По определению предела по Коши, . По определению предела последовательности, . Значит, при выполняется условие , из которого сразу следует неравенство , означающее, что , Тем самым, предел этой функции по Гейне также существует.

Предположим теперь, что предел по Коши не существует и докажем, что не существует и предел по Гейне. По предположению, существует такое число , что для любого числа существует такая точка , что . Последовательно выбирая в качестве числа , находим точки такие, что . Эти точки представляют собой последовательность точек, удовлетворяющую всем условиям, входящим в определение предела по Гейне, однако для этой последовательности условие не выполнено.►

Докажем теперь, что из условия (1) вытекает, что функция имеет предел по Гейне.

Действительно, возьмём любую последовательность такую, что и такую, что для всех выполнено неравенство . Рассмотрим соответствующую последовательность . Зафиксируем и выберем соответствующее с помощью (1). Так как , имеем: . Далее, при и,по условию (1), . Значит, -фундаментальная последовательность. По теореме 12.3 существует предел последовательности , обозначим его .

Осталось доказать, что если взять любую другую последовательность такую, что и такую, что для всех выполнено неравенство , то .

Для этого рассмотрим последовательность . Это – последовательность точек, сходящаяся к точке и не принимающая значение , согласно своему определению. Поэтому последовательность значений также имеет предел, по доказанному выше. Тогда по теореме 12.1 предел этой последовательности равен пределу подпоследовательности и пределу подпоследовательности , равному .►

 







Дата добавления: 2015-04-16; просмотров: 420. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия