Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 14: НЕПРЕРЫВНОСТЬ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ





1. Непрерывность многочленов

Так как функция у = х непрерывна в любой точке, по теореме о непрерывности произведения непрерывных функций, функция у = х 2 – непрерывная. Последовательно применяя вышеупомянутую теорему, получаем, что для любого натурального m функция у = x m – непрерывна. Умножая непрерывные функции e = x, x 2, a 3, …, x k на постоянные числа с1, с2, …, сk соответственно, получаем, что c1 x, c2 x 2, …, ck x k – непрерывные функции. Сложив c0 + c1 x + … + ck x k получаем непрерывную функцию. Итак, многочлен – непрерывная на всей прямой функция.

2. Непрерывность рациональной функции

По определению, рациональной функцией R (x) называется отношение двух многочленов, P (x) и Q (x), т. е. R (x) = .

Во всех тех точках x 0, где Q (x) ≠ 0, функция R (x) непрерывна по теореме о непрерывности частного. Если же в точке x 0 выполняется равенство Q (x 0) = 0, то в этой точке может быть устранимый разрыв, как например, в точке x 0 = 1 у функции . Кроме того, в этой точке может оказаться разрыв второго рода, как, например, в точке x 0 = 0 у функции .

Для дальнейшего исследования будет полезной следующая теорема.

Теорема 14.1. Пусть y = f(x) возрастает (или убывает) на промежутке X, причём множество её значений образует промежуток Y. Тогда f(x) – непрерывная на X функция.

Для доказательства вспомним, что если f(x) строго монотонна на промежутке X, то, согласно следствию теоремы 10.2, в любой внутренней точке x 0 этого промежутка существуют и . Если эти числа равны друг другу, то они, ввиду монотонности, равны f(x 0) и f(x)ЄC(x 0). Если же эти значения не равны друг другу, то во множестве значений Y функции f (x) имеется “пробел” между точками и , опять же ввиду монотонности f (x). Но, по условию, множество значений Y образует промежуток, в котором не может быть “пробелов” по определению промежутка. Теорема доказана.

3. Непрерывность показательной функции

Функция y = ax монотонна (возрастает при a >1, убывает при 0< a <1) и множеством ее значений при x Î является бесконечный промежуток – множество всех положительных чисел. По доказанной теореме, функция y = ax непрерывна на всей числовой оси.

4. Непрерывность логарифмической функции

Функция log ax монотонна (возрастает при a >1, убывает при 0< a <1) и при x Î(0,+¥) ее множеств значений есть . По доказанной теореме, y =log ax непрерывна на (0,+¥).

5. Непрерывность функции y = x m

Функция y = x m определена при x >0, причем x m = e m ln x. По доказанному, z = m ln x - непрерывная функция при x >0, функция y = ez непрерывна при всех z, поэтому, по теореме о непрерывности сложной функции, y = x m - непрерывная при x >0 функция.

6. Функция y = sin x

При вычислении предела было установлено, что если , то . Ввиду нечетности функций y = x и y = sin x, при . Из этого сразу следует, что при выполняется неравенство . Пусть x 0 произвольная точка. Докажем, что . Это равносильно тому, что . В свою очередь, это равносильно тому, что . Так как, по доказанному выше, , . Кроме того, функция 2cos , очевидно, ограниченная. По свойствам бесконечно малых, получаем требуемое.

y
7. Функция y = cos x

Она непрерывна по теореме о непрерывности сложной функции, так как , – непрерывная функция и y = sin z – тоже непрерывная функция.

8. Функция y = tg x

Эта функция непрерывна во всех точках, кроме . В этих, последних, она имеет разрыв второго рода.

9. Функция y = ctg x

она непрерывна во всех точках, кроме точек x = pn, nÎ z, где она имеет разрыв второго рода.

10. Непрерывность функции y = a rcsin x

Она определена на отрезке [-1, 1], возрастает на нём и множеством её значений является отрезок [ ]. По доказанной теореме 14.1, y = arcsin x непрерывна на [-1, 1].

11. Непрерывность функции y = arccos x

Следует из тождества arcsin x + arccos x = , т.е. arccos x = - arcsin x - функция, также непрерывная на [-1, 1].

12. Непрерывность функции y = arctg x

Функция определена и возрастаёт на всей числовой прямой. Множество значений – интервал (). Поэтому y = arctg x непрерывна на всей числовой прямой.

13. Непрерывность функции y = arctg x.

Следует из равенства: arctg x + arctg x = .

 

Вопрос 15:СИМВОЛЫ , . ВЫЧИСЛЕНИЕ , ,

Пусть , определены в .

Определение 15.1. , , если существует , – б. м. при такая, что .

Определение 15.2. , , если существует , – ограниченная в , такая, что .

Примеры.

1) при , т.к. , а ; но

2) , при ∞, т.к. , и при ∞.

Вообще, если и , то и если и ∞ то .

Из свойств бесконечно малых величин следуют такие свойства символов , :







Дата добавления: 2015-04-16; просмотров: 680. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия