Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема 16.1.(Больцано, Коши) Пусть функция непрерывна на отрезке и принимает на его концах значения разных знаков. Тогда существует хотя бы одна точка такая, что





$Пусть, для определённости, . Обозначим и рассмотрим точку . Если оказалось, что , то теорема верна при . Если же , то либо и в этом случае положим , либо и в этом случае положим . В обоих случаях получен отрезок , длина которого равна половине длины отрезка и на концах которого функция принимает значения разных знаков.

Разделим этот отрезок пополам точкой . Если , то теорема верна при . Если же , то либо и в этом случае положим , либо и в этом случае положим . Снова обоих случаях получен отрезок , длина которого равна половине длины отрезка и на концах которого функция принимает значения разных знаков.

Продолжим процесс деления отрезков пополам. При этом возникают две возможности. Либо на каком- то шаге получаем, для , и . Тогда теорема справедлива. Либо для всех выполняются неравенства . Тогда получается бесконечная система стягивающихся отрезков. Действительно, по построению каждый следующий отрезок вложен в предыдущий, а длина отрезка , равная , стремится к нулю при . Эти отрезки имеют общую точку, которую будем обозначать . Докажем, что .

Действительно, с одной стороны, , поэтому, по теореме о предельном переходе в неравенствах, , так как функция по условию непрерывна на отрезке и . С другой стороны, , так как . Полученные неравенства доказывают, что . #







Дата добавления: 2015-04-16; просмотров: 488. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2025 год . (0.13 сек.) русская версия | украинская версия