Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Если , то при





Доказательство. Действительно, если , а , т. е. , , где , – б. м. при , то , где – б. м. при , что и означает справедливость доказываемого равенства. Для большей ясности повторим, что равенство следует понимать так: если , то при .

Теорема 15.3. , ,

Доказательство. Эти свойства сразу следуют из того, что произведение бесконечно малой величины на ограниченную есть бесконечно малая величина.

Символы , удобны при вычислении пределов.

Перейдём к вычислению пределов , , , которые далее будут использованы при вычислении производных. Вновь подчеркнём, что при ответе на этот билет при их вычислении нельзя пользоваться правилами Лопиталя или формулой Тейлора. Разумеется, они дадут верный ответ, но их применение требует знания производных функций, стоящих в числителях этих дробей. А для вычисления этих производных, как отмечено выше, требуется знать эти самые пределы. Поэтому получится не доказательство, а порочный логический круг.

Теорема 15.4. =1, = , = .

Доказательство. 1. В теореме 11.2 мы установили, что . Рассмотрим левую часть этого равенства и преобразуем её так: . По непрерывности показательной функции (а именно: непрерывность функции означает, что ) получаем , т. е.

2.Далее рассмотрим предел и сделаем в нём замену переменной (это – монотонная замена и теорема о пределе сложной функции будет верна). При и , и наоборот, при также .

Поэтому , по доказанному выше.

Для имеем

3. Рассмотрим . Обозначим , т. е. . Тогда , и при переменная , и наоборот, при переменная .
Наш предел примет вид . Это преобразование законное, т. к. при и , поэтому . Далее используем доказанное в первом пункте равенство. Таким образом, искомый предел равен .

 

 

Запишем найденные предельные соотношения с помощью символа . означает, что , при или, , .

Равенство означает, что , .

Аналогично, , .

(Кстати, означает, что при ).

 

 







Дата добавления: 2015-04-16; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия