Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 13: НЕПРЕРЫВНОСТЬ. ТОЧКИ РАЗРЫВА.СВОЙСТВА НЕПРЕРЫВНЫХ ФУНКЦИЙ





Определение 13.1 Функция называется непрерывной в точке , если , т.е. .

Для непрерывности в точке используется обозначение .

Теорема 13.1.Если функции и непрерывны в точке, то сумма, разность, произведение и, если, то и частное этих функций - тоже непрерывны в точке.

Доказательство. Непосредственно следует из теоремы 8.4 о пределе суммы, разности, произведения и частного двух функций, имеющих пределы.

Теорема 13.2 (непрерывность сложной функции). Пусть непрерывна в точке, причем. Пусть непрерывна в точке. Тогда сложная функция непрерывна в точке.

◄То, что ,означает: .

То, что , означает:

Поэтому для произвольного можно сначала выбрать число так, чтобы из неравенства следовало неравенство . Затем по этому числу найдем число такое, что как только , так . Но тогда и , что и требовалось доказать.►

Несколько сложнее теорема о пределе сложной функции.







Дата добавления: 2015-04-16; просмотров: 475. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия