Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 17: ОГРАНИЧЕННОСТЬ НЕПРЕРЫВНОЙ НА ОТРЕЗКЕ ФУНКЦИИ





Теорема 17.1.(Вейерштрасс) Пусть функция непрерывна на отрезке . Тогда она ограничена на этом отрезке.

$ Будем вести доказательство теоремы методом «от противного». Предположим, что не ограничена на отрезке . Это означает, что для любого числа существует точка такая, что . Последовательно выбирая число равным числам , находим соответствующие точки такие, что . Эти точки образуют бесконечную последовательность, а так как все они принадлежат отрезку , т.е. , эта последовательность является ограниченной. Применяем теорему Больцано-Вейерштрасса для последовательностей, согласно которой существует подпоследовательность последовательности , сходящаяся к некоторому пределу, который будем обозначать . Так как , по теореме о предельном переходе в неравенствах получаем: , т.е. и, следовательно, функция непрерывна в этой точке. Но это означает, что для любой последовательности, в частности, и для последовательности , стремящейся к , последовательность соответствующих значений должна стремиться к . Но , поэтому последовательность стремится к . Получено противоречие с предположением о неограниченности на отрезке .#

Замечание. Если функция непрерывна на интервале , то она может быть неограниченной на этом интервале. Например, функция на интервале непрерывна. Однако для любого числа имеет место неравенство , откуда и значение этой функции в точке равно .







Дата добавления: 2015-04-16; просмотров: 427. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия