Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обратная функция. Обратная функция – частный случай понятия обратного отображения (см





Обратная функция – частный случай понятия обратного отображения (см. определение 3.9). Если задана функция , обладающая тем свойством, что любое своё значение она принимает при единственном значении , то это даёт возможность рассматривать обратную функцию , такую, что равенства и равносильны. Примером служат функции . Ясно, что обе функциональные зависимости, и определяют одну и ту же кривую на плоскости. Часто рассматривают функцию (и именно эту функцию называют обратной). График такой функции получается из графика функции отражением относительно биссектрисы первого координатного угла.

Теорема 17.4. Пусть функция возрастает (убывает) на промежутке. Тогда на промежутке, представляющем собой множество её значений (по теореме 17.3), определена обратная функция, которая также возрастает(убывает) и непрерывна.

◄Ограничимся случаем возрастания. По определению множества значений функции, для любого существует число такое, что . Так как возрастает на , то для любого выполняется неравенство , а для любого выполняется неравенство . Поэтому любое своё значение функция принимает ровно один раз, в точке , что и позволяет определить функцию такую, что для любого выполняется равенство . Легко видеть, функция возрастает на . Действительно, как показано выше, для любого значения соответствуют значениям , а значения соответствуют значениям . Но это означает, что и обратно, для любого значения соответствуют значениям , а значения соответствуют значениям . Наконец, для доказательства непрерывности на промежутке воспользуемся теоремой 14.1. Действительно, функция возрастает на промежутке и её множество значений образует промежуток . ►

 

 







Дата добавления: 2015-04-16; просмотров: 457. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия