Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обратная функция. Обратная функция – частный случай понятия обратного отображения (см





Обратная функция – частный случай понятия обратного отображения (см. определение 3.9). Если задана функция , обладающая тем свойством, что любое своё значение она принимает при единственном значении , то это даёт возможность рассматривать обратную функцию , такую, что равенства и равносильны. Примером служат функции . Ясно, что обе функциональные зависимости, и определяют одну и ту же кривую на плоскости. Часто рассматривают функцию (и именно эту функцию называют обратной). График такой функции получается из графика функции отражением относительно биссектрисы первого координатного угла.

Теорема 17.4. Пусть функция возрастает (убывает) на промежутке. Тогда на промежутке, представляющем собой множество её значений (по теореме 17.3), определена обратная функция, которая также возрастает(убывает) и непрерывна.

◄Ограничимся случаем возрастания. По определению множества значений функции, для любого существует число такое, что . Так как возрастает на , то для любого выполняется неравенство , а для любого выполняется неравенство . Поэтому любое своё значение функция принимает ровно один раз, в точке , что и позволяет определить функцию такую, что для любого выполняется равенство . Легко видеть, функция возрастает на . Действительно, как показано выше, для любого значения соответствуют значениям , а значения соответствуют значениям . Но это означает, что и обратно, для любого значения соответствуют значениям , а значения соответствуют значениям . Наконец, для доказательства непрерывности на промежутке воспользуемся теоремой 14.1. Действительно, функция возрастает на промежутке и её множество значений образует промежуток . ►

 

 







Дата добавления: 2015-04-16; просмотров: 457. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия