Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема 19.3. Функция , имеющая производную в точке , дифференци­руема в этой точке





;По условию, существует . Следовательно, по теореме о представлении функции, имеющей предел в точке,

, (4)

где и при . Положим

Тогда также при и по формуле (4') для всех спра­ведлива формула (3). Тем самым, дифференцируема в точке (с коэффи­циентом ).►

Таким образом, сказать, что числовая функция дифференцируема в дан­ной точке, или что она имеет в этой точке производную, одно и то же. Нахо­ждение производной функции у функции называют дифференцировани­ем этой функции.

3. Касательная к графику функции

Как и нахождение скорости неравномерного движения, нахождение ка­сательной к кривой линии - одна из основных задач, решение которых при­вело к созданию дифференциального исчисления.

Рассмотрим частный случай задачи о касательной, когда линией служит график функ­ции.

Определение 19.3. Пусть числовая функция определена на невырожден­ном промежутке и непрерывна в его точке (так что расстояние от соответствующей точки графика до его точки , , стремится к нулю при ). Касательной к графику функции в точке называют такую прямую, проходящую через , что отношение расстояния от точки до этой прямой к расстоянию от до стремится к нулю при (т.е. что бесконечно мало по сравнению с при ).

Суть этого определения можно наглядно описать следующим образом: если пред­ставить, что точка движется по линии к точке касания , то, какова бы ни была точность наблюдения, с некоторого момен­та точка , будучи еще отличной от , уже неотличима от своей проекции на касательную (рис. 14). Таким образом, кривая, обладающая в точке каса­тельной, почти сливается с ней вблизи этой точки.

Теорема 19.4. Если функция, определенная на промежутке, дифференци­руема в его точке, то график этой функции имеет в соответствующей точ­ке касательную, причем угловой коэффициент касательной равен.

◄ По условию и по теореме 19.2 предыдущего пункта, представление

, (5)

справедливо для всех , принадлежащих некоторой окрестности точки , и при . Прямая с угловым коэффициентом , проходящая через точку , име­ет уравнение

. (6)

Пусть - точка графика с абсцис­сой и (рис. 15), - про­екция этой точки на прямую (6) и - точка этой прямой с абсциссой . Тогда направленный отрезок равен , так что, вычитая (8) из (7), получаем . Так как , а , то . Но при . Следовательно, при , т.е. (7) - уравнение касательной к графику функции в его точке . ►







Дата добавления: 2015-04-16; просмотров: 580. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия