Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема 19.3. Функция , имеющая производную в точке , дифференци­руема в этой точке





;По условию, существует . Следовательно, по теореме о представлении функции, имеющей предел в точке,

, (4)

где и при . Положим

Тогда также при и по формуле (4') для всех спра­ведлива формула (3). Тем самым, дифференцируема в точке (с коэффи­циентом ).►

Таким образом, сказать, что числовая функция дифференцируема в дан­ной точке, или что она имеет в этой точке производную, одно и то же. Нахо­ждение производной функции у функции называют дифференцировани­ем этой функции.

3. Касательная к графику функции

Как и нахождение скорости неравномерного движения, нахождение ка­сательной к кривой линии - одна из основных задач, решение которых при­вело к созданию дифференциального исчисления.

Рассмотрим частный случай задачи о касательной, когда линией служит график функ­ции.

Определение 19.3. Пусть числовая функция определена на невырожден­ном промежутке и непрерывна в его точке (так что расстояние от соответствующей точки графика до его точки , , стремится к нулю при ). Касательной к графику функции в точке называют такую прямую, проходящую через , что отношение расстояния от точки до этой прямой к расстоянию от до стремится к нулю при (т.е. что бесконечно мало по сравнению с при ).

Суть этого определения можно наглядно описать следующим образом: если пред­ставить, что точка движется по линии к точке касания , то, какова бы ни была точность наблюдения, с некоторого момен­та точка , будучи еще отличной от , уже неотличима от своей проекции на касательную (рис. 14). Таким образом, кривая, обладающая в точке каса­тельной, почти сливается с ней вблизи этой точки.

Теорема 19.4. Если функция, определенная на промежутке, дифференци­руема в его точке, то график этой функции имеет в соответствующей точ­ке касательную, причем угловой коэффициент касательной равен.

◄ По условию и по теореме 19.2 предыдущего пункта, представление

, (5)

справедливо для всех , принадлежащих некоторой окрестности точки , и при . Прямая с угловым коэффициентом , проходящая через точку , име­ет уравнение

. (6)

Пусть - точка графика с абсцис­сой и (рис. 15), - про­екция этой точки на прямую (6) и - точка этой прямой с абсциссой . Тогда направленный отрезок равен , так что, вычитая (8) из (7), получаем . Так как , а , то . Но при . Следовательно, при , т.е. (7) - уравнение касательной к графику функции в его точке . ►







Дата добавления: 2015-04-16; просмотров: 580. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия