Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос :ПРОИЗВОДНЫЕ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ, ПРОИЗВОДНАЯ ОБРАТНОЙ ФУНКЦИИ, ПРОИЗВОДНАЯ СЛОЖНОЙ ФУНКЦИИ, ПРОИЗВОДНАЯ ФУНКЦИИ, ЗАДАННОЙ ПАРАМЕТРИЧЕСКИ





Этот вопрос является дополнительным к вопросу 19. Хотя он не включён в билеты, информацию, в нём содержащуюся, знать на экзамене обязательно!

 

1.Производная степенной функции , где − любое вещественное число). Область определения этой функции зависит от . Имеем (при )

.

Если воспользоваться пределом, вычисленным в теореме 15.4, то получим

.

В частности

если , то

если , то .

2 .Производная показательной функции (, ). Здесь

.

Воспользовавшись пределом, вычисленным в теореме 15.4, найдём:

.

В частности,

если , то и .

Итак, скорость возрастания показательной функции (при ) пропорциональна значению самой функции: чем большего значения функция уже достигла, тем быстрее в этот момент она растёт. Это даёт точную характеристику роста показательной функции, о которой мы имели уже случай говорить.

3. Производная логарифмической функции (, ). В этом случае

.

Воспользуемся пределом, вычисленным в теореме 15.4:

.

В частности, для натурального логарифма получается исключительно простой результат:

при имеем .

Это даёт (хотя, по существу, и не новое) основание для предпочтения, которое оказывается натуральным логарифмам при теоретических исследованиях.

4.Производные тригонометрических функций. Пусть , тогда

.

Пользуясь непрерывностью функции и известным пределом , получим

.

Аналогично найдём:

если , то .

В случае применима теорема 19.9, согласно которой

Аналогично,

если , то .







Дата добавления: 2015-04-16; просмотров: 431. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия