Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Последовательные производные





Производная функции f, в свою очередь, может иметь производную. Последнюю в этом случае называют второй производной (или производной второго порядка) функции f и обозначают обычно . Таким образом, . В соответствии с этим называют первой производной (или производной первого порядка) функции f. По индукции определяют (в предположении, что они существуют) производные следующих порядков: f´´´ = (f´´)´; и т.д. Если f имеет n-ю производную (а значит, и производные всех меньших порядков) во всех точках некоторого промежутка I, то говорят, что f n раз (или n-кратно) дифференцируема на промежутке I. Функцию f, имеющую на I производные всех порядков, называют бесконечно дифференцируемой на I. Таковы, например, на всем множестве действительных чисел алгебраические многочлены, показательные функции.

Для обозначения порядка производной, если он невелик, используют также римские цифры. Так, fIV – четвертая производная функции f. Вообще же, n-ю производную функции f обозначают f(n) (в частности, f(1) = f´;). При этом удобно саму функцию f обозначать символом f(0). В таких обозначениях, очевидно, f(n) = (f(k))(n-k) для всех k, 0≤k≤n.

Итак, функция f имеет в точке x0 (a,b) производную f(n)(x0) (обозначение: f D(n)(x0)) в том и только в том случае, когда в некоторой окрестности точки x0, (a,b), существуют производные функции f(k) всех порядков , и функция f(n-1) имеет в x0 производную (f(n-1))´(x0) = f(n)(x0).

Вторая производная имеет важный механический смысл. Если прямолинейное движение материальной точки описывается уравнением S = f(t), то, как было показано,
V = f´(t) – скорость точки в момент t. Величину j = f´´(t) ("скорость изменения скорости") называют ускорением точки в момент t. Согласно третьему закону классической механики, сила F, приложенная к точке, пропорциональна ускорению, F = mj; коэффициент пропорциональности m называют массой точки.

Для некоторых бесконечно дифференцируемых функций легко указать формулу для вычисления n-ой производной.







Дата добавления: 2015-04-16; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия