Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 23: ТЕОРЕМЫ ФЕРМА, РОЛЛЯ. НЕОБХОДИМЫЕ УСЛОВИЯ ЭКСТРЕМУМА




Пусть - некоторая проколотая окрестность точки а.

Определение: Точка аточка локального максимума f(x), если для всех x выполняется неравенство f(x)<f(a).Если для всех x выполняется неравенство , то говорят о точке нестрогого максимума.

Аналогичным образом определяются точки локального минимума и нестрогого локального минимума. Следует только заменить входящие в определение неравенства неравенствами и , соответственно.

Обобщающие названия для точек максимума и минимума – точки экстремума.

Теорема 23.1(П. Ферма): Пусть функция y=f(x) определена в окрестности точки а, пусть эта точка – точка экстремума (хотя бы нестрогого) для функции f(x) и пусть существует производная Тогда =0.

Рассмотрим, для определенности, случай точки максимума. Тогда для всех x выполняется неравенство f(x)<f(a), или . Если x и х<a, то .

По условию существует производная . Значит, существует . По теореме о предельном переходе в неравенствах, .

Аналогично, при x , х>a выполняется неравенство , поэтому . Так как, = = , должны выполняться неравенства , из которых следует доказываемое равенство =0. ►

Примечание 1. В точке экстремума производная может не существовать. Примером служит функция . Она имеет минимум в точке х=0. однако , и не существует.

Примечание 2. Теорема Ферма дает необходимое условие экстремума, но не достаточное, т.е. производная функции в точке может равняться нулю, а экстремума в этой точке нет. Пример: . Эта функция имеет производную , обращающуюся в ноль при х=0, однако возрастает на всей числовой прямой.

Следствие (необходимые условия экстремума). Если функция непрерывна на (а;b), то точками локального экстремума могут быть только такие точки х0 , в которых производная функции либо не существует, либо обращается в 0.







Дата добавления: 2015-04-16; просмотров: 201. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.002 сек.) русская версия | украинская версия