Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 23: ТЕОРЕМЫ ФЕРМА, РОЛЛЯ. НЕОБХОДИМЫЕ УСЛОВИЯ ЭКСТРЕМУМА





Пусть - некоторая проколотая окрестность точки а.

Определение: Точка аточка локального максимума f(x), если для всех x выполняется неравенство f(x)<f(a). Если для всех x выполняется неравенство , то говорят о точке нестрогого максимума.

Аналогичным образом определяются точки локального минимума и нестрогого локального минимума. Следует только заменить входящие в определение неравенства неравенствами и , соответственно.

Обобщающие названия для точек максимума и минимума – точки экстремума.

Теорема 23.1(П. Ферма): Пусть функция y=f(x) определена в окрестности точки а, пусть эта точка – точка экстремума (хотя бы нестрогого) для функции f(x) и пусть существует производная Тогда =0.

Рассмотрим, для определенности, случай точки максимума. Тогда для всех x выполняется неравенство f(x)<f(a), или . Если x и х<a, то .

По условию существует производная . Значит, существует . По теореме о предельном переходе в неравенствах, .

Аналогично, при x , х>a выполняется неравенство , поэтому . Так как, = = , должны выполняться неравенства , из которых следует доказываемое равенство =0. ►

Примечание 1. В точке экстремума производная может не существовать. Примером служит функция . Она имеет минимум в точке х=0. однако , и не существует.

Примечание 2. Теорема Ферма дает необходимое условие экстремума, но не достаточное, т.е. производная функции в точке может равняться нулю, а экстремума в этой точке нет. Пример: . Эта функция имеет производную , обращающуюся в ноль при х=0, однако возрастает на всей числовой прямой.

Следствие (необходимые условия экстремума). Если функция непрерывна на (а;b), то точками локального экстремума могут быть только такие точки х0, в которых производная функции либо не существует, либо обращается в 0.







Дата добавления: 2015-04-16; просмотров: 514. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия