Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вторая производная функции , заданной параметрически





Рассмотрим уравнение (2)

Где , − дважды дифференцируемые функции на некотором промежутке ; пусть, кроме того, функция строго возрастает (или убывает) на и ни в одной точке этого промежутка не равна 0. В пункте 20.7 доказано, что в этом случае уравнения (2) задают функцию , и производная этой функции равна

 

Бывает также, что производные по параметру обозначают так: , . Тогда формула (3) принимает вид: . Найдём вторую производную функции :

 

5.Дифференциалы высших порядков.

Однородную линейную функцию называют линейной формой.

Напомним, что если функция дифференцируема в точке , то

дифференциалом в x называют линейную форму .

Аналогично, если дифференцируема дважды в точке ,

то ее вторым дифференциалом называют квадратичную форму .

Вообще, n-ым дифференциалом в точке x будет n-ичная

форма (в предположении, что существует).

Для n-го дифференциала в точке x используют обозначение или, более

строго .

Таким образом, по определению,

= для всех Î . (2)

Согласно этому определению, есть n-я степень функции и

потому используют обозначение . Тогда (2) примет вид

для всех Î , или равенства

. (3)

Форма (2) записи n-го дифференциала не инвариантна

уже при n=2. Действительно, подставляя вместо дифференцируемую

функцию в левую часть формулы (2) (при n=2), получим

= (4)

а в результате такой же подстановки в правую часть, имеем

.(5)

Правые части формул (5) и (4) отличаются слагаемым .

Вообще говоря, это слагаемое не равно нулю. Однако если - линейная функция,

то и, вообще, для любого имеет место равенство ,

откуда следует, что формула (3) будет верна и для линейной функции .

 

 







Дата добавления: 2015-04-16; просмотров: 467. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия