Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производная функции, заданной параметрически





Рассмотрим уравнение (1)

Где , − дифференцируемые функции на некотором промежутке ; пусть, кроме того, функция строго возрастает (или убывает) на и ни в одной точке этого промежутка не равна 0.

Символ использован здесь для обозначения производной функции по переменной . Тогда, по теореме 17.4, существует обратная функция , причем ее производная, по теореме 20.1, равна

Но тогда уравнения задают , и производная этой функции , по теореме 20.2 о производной сложной функции. Используя равенство (2), окончательно получаем:

Часто вместо равенства (3) записывают равносильное ему равенство

Бывает также, что производные по параметру обозначают так: , . Тогда формула (3) принимает вид: .

 

Вопрос 20: ДИФФЕРЕНЦИАЛ. ИНВАРИАНТНОСТЬ ФОРМЫ ПЕРВОГО ДИФФЕРЕНЦИАЛА

1. Понятие дифференциала числовой функции

Определение 1. Если числовая функция дифференцируема в точке , то ее дифференциалом в этой точке называют однородную линейную функцию (новой) независимой переменной .

Таким образом,

= (1)

Положив в формуле (1) , получим

(2)

так что дифференциал функции в каждой точке есть

тождественная функция. Подставляя (2) в правую часть (1), получаем

= , (3)

равенство двух линейных функций и . Из него следует, что часто используемое обозначение производной можно рассматривать, как отношение дифференциалов и .

Функция определена для всех действительных значений . Однако по традиции часто рассматривают лишь на множестве тех , для которых принадлежит области определения функции; т.е., лишь на множестве приращений аргумента функции . Это объясняется тем, что дифференциал тесно связан с приращением функции. Так как, по предположению, дифференцируема в точке x, то

, (4)

где при и первое слагаемое в правой части (4) – дифференциал, но рассматриваемый только для . Если , то ,поэтому говорят, что «дифференциал есть главная линейная часть приращения функции».

2. Геометрический и механический смысл дифференциала.

Пусть числовая функция дифференцируема в точке . Как известно, ее график имеет в точке касательную с угловым коэффициентом .

Теорема 20.1. Значение = дифференциала равно приращению ординаты этой касательной при переходе от к (см. рис.).

►Действительно, , ,поэтому . Из рисунка также видно, что есть часть приращения функции, стремящееся к совпадению с ним при .◄

Дифференциал допускает и механическое толкование. Если – время, а – путь, пройденный прямолинейно движущейся точкой к моменту , то - ее скорость в данный момент. Тогда равен длине пути, который прошла бы точка за промежуток времени от до , если бы ее скорость оставалась неизменной (т.е. приложенные силы уравновесились).

3. Инвариантность формы первого дифференциала

Правило дифференцирования сложной функции приведет нас к одному замечательному и важному свойству дифференциала.

Пусть функции и таковы, что из них может быть составлена сложная функция: . Если существуют производные и , то по теореме 20.2 существует и производная

(5)

Дифференциал , если считать независимой переменной, выразится по формуле (3). Перейдём теперь к независимой переменной ; в этом предположении имеем другое выражение для дифференциала:

.

Заменяя производную её выражением (5) и замечая, что есть дифференциал как функции от , окончательно получим:

,

т. е. вернёмся к прежней форме дифференциала.

Таким образом, мы видим, что







Дата добавления: 2015-04-16; просмотров: 498. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия