Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производная функции, заданной параметрически





Рассмотрим уравнение (1)

Где , − дифференцируемые функции на некотором промежутке ; пусть, кроме того, функция строго возрастает (или убывает) на и ни в одной точке этого промежутка не равна 0.

Символ использован здесь для обозначения производной функции по переменной . Тогда, по теореме 17.4, существует обратная функция , причем ее производная, по теореме 20.1, равна

Но тогда уравнения задают , и производная этой функции , по теореме 20.2 о производной сложной функции. Используя равенство (2), окончательно получаем:

Часто вместо равенства (3) записывают равносильное ему равенство

Бывает также, что производные по параметру обозначают так: , . Тогда формула (3) принимает вид: .

 

Вопрос 20: ДИФФЕРЕНЦИАЛ. ИНВАРИАНТНОСТЬ ФОРМЫ ПЕРВОГО ДИФФЕРЕНЦИАЛА

1. Понятие дифференциала числовой функции

Определение 1. Если числовая функция дифференцируема в точке , то ее дифференциалом в этой точке называют однородную линейную функцию (новой) независимой переменной .

Таким образом,

= (1)

Положив в формуле (1) , получим

(2)

так что дифференциал функции в каждой точке есть

тождественная функция. Подставляя (2) в правую часть (1), получаем

= , (3)

равенство двух линейных функций и . Из него следует, что часто используемое обозначение производной можно рассматривать, как отношение дифференциалов и .

Функция определена для всех действительных значений . Однако по традиции часто рассматривают лишь на множестве тех , для которых принадлежит области определения функции; т.е., лишь на множестве приращений аргумента функции . Это объясняется тем, что дифференциал тесно связан с приращением функции. Так как, по предположению, дифференцируема в точке x, то

, (4)

где при и первое слагаемое в правой части (4) – дифференциал, но рассматриваемый только для . Если , то ,поэтому говорят, что «дифференциал есть главная линейная часть приращения функции».

2. Геометрический и механический смысл дифференциала.

Пусть числовая функция дифференцируема в точке . Как известно, ее график имеет в точке касательную с угловым коэффициентом .

Теорема 20.1. Значение = дифференциала равно приращению ординаты этой касательной при переходе от к (см. рис.).

►Действительно, , ,поэтому . Из рисунка также видно, что есть часть приращения функции, стремящееся к совпадению с ним при .◄

Дифференциал допускает и механическое толкование. Если – время, а – путь, пройденный прямолинейно движущейся точкой к моменту , то - ее скорость в данный момент. Тогда равен длине пути, который прошла бы точка за промежуток времени от до , если бы ее скорость оставалась неизменной (т.е. приложенные силы уравновесились).

3. Инвариантность формы первого дифференциала

Правило дифференцирования сложной функции приведет нас к одному замечательному и важному свойству дифференциала.

Пусть функции и таковы, что из них может быть составлена сложная функция: . Если существуют производные и , то по теореме 20.2 существует и производная

(5)

Дифференциал , если считать независимой переменной, выразится по формуле (3). Перейдём теперь к независимой переменной ; в этом предположении имеем другое выражение для дифференциала:

.

Заменяя производную её выражением (5) и замечая, что есть дифференциал как функции от , окончательно получим:

,

т. е. вернёмся к прежней форме дифференциала.

Таким образом, мы видим, что







Дата добавления: 2015-04-16; просмотров: 498. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия