Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производная обратной функции





Прежде чем заняться вычислением производных от обратных тригонометрических функций, докажем следующую общую теорему.

Теорема 20.1.Пусть 1) функция возрастает(или убывает) и непрерывна на некотором промежутке 2) в точке этого промежутка имеет конечную и отличную от нуля производную. Тогда для обратной функции в соответствующей точке также существует производная, равная.

◄Придадим значению произвольное приращение , тогда соответственное приращение получит и функция . Заметим, что при , ввиду однозначности самой функции , и . Имеем

.

Если теперь по любому закону, то − в силу непрерывности функции − и приращение . Но тогда знаменатель правой части написанного равенства стремится к пределу , следовательно, существует предел для левой части, равный обратной величине ; он и представляет собой производную .►

Итак, имеем простую формулу:

.

Легко выяснить её геометрический смысл. Мы знаем, что производная есть тангенс угла , образованный касательной к графику функции с осью . Но обратная функция имеет, лишь независимая переменная для неё откладывается по оси . Поэтому производная равна тангенсу угла β, составленного той же касательной с осью (см. рис.) Таким образом, выведенная формула сводится к известному соотношению

 

,

связывающему тангенсы двух углов α и β, сумма которых равна .

Положим для примера . Обратной для неё функцией будет . Так как , то по нашей формуле,

,

в согласии с 3.

Переходя теперь к вычислению производных от обратных тригонометрических функций, мы для удобства обменяем ролями переменные x и y, переписав доказанную формулу в виде

.

5.Обратные тригонометрические функции. Рассмотрим функцию (), причем . Она является обратной для функции , имеющей для указанных значений положительную производную . В таком случае существует также производная и равна, по нашей формуле,

;

корень мы берем со знаком плюс, так как .

Мы исключили значения , ибо для соответствующих значений производная .

Функция () служит обратной для функций . По нашей формуле

.

Аналогично можно получить:

для ()

для ().







Дата добавления: 2015-04-16; просмотров: 459. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2026 год . (5.184 сек.) русская версия | украинская версия