Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема 23.2(М.Ролль) Пусть





Тогда существует точка с (a;b) такая, что =0.

◄Так как функция f(x) непрерывна на отрезке [a;b], она принимает на этом отрезке наибольшее значение М и наименьшее значение m.

Если оказалось, что m=M, то это означает, что m=f(x)=M для всех x [a;b], т.е. функция - постоянная на [a;b]. Поэтому для всех х (a;b) имеет место равенство =0.

Если же m M, т.е. m<M, то хотя бы одно из этих значений функция принимает во внутренней точке [a;b].

Действительно, по условию 3) значения f(a) и f(b) равны друг другу и могут оказаться равны не более, чем одному из чисел m, M.

Пусть, например, М=f(c), где с (a;b). Так как М наибольшее значение функции f(x) на всем отрезке [a;b], то оно будет наибольшим и для x , т.е. с – точка локального экстремума.

По условию 2), в этой точке существует производная . По теореме Ферма, =0.►

Замечание 1. все условия теоремы Ролля являются существенными. Это означает, что если не выполняется одно из них, а остальные два выполняются, заключение теоремы может оказаться неверным.

Примеры. 1)

Выполнены условия 2) и 3), не выполнено условие 1). Для всех имеем =1.

2) f(x)= , x [-1;1].

Не выполнено условие 2), условия 1),3) выполнены. На интервале (-1;0): =-1; на интервале (0;1): =1. В точке x=0 производная не существует, поэтому на (-1;1) нет такой точки, что =0

3) f(x)=x

Выполнены первые 2 условия, третье на отрезке [0;1] не выполнено. Всюду на (0;1) имеем =1.







Дата добавления: 2015-04-16; просмотров: 430. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия