Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие понятия теории очередей





Ожидание того или иного вида обслуживания является частью нашей повседневной жизни. Мы ожидаем, чтобы пообедать в ресторане, мы стоим в очереди к кассам в магазинах и выстраиваемся в очередь в почтовых отделениях. Очередь возникает практически во всех присутственных местах: налоговых инспекциях, паспортных столах, страховых компаниях и пр. Феномен ожидания характерен не только для людей: работы, поставленные в очередь для выполнения; группа пассажирских самолетов, ожидающих разрешения на посадку в аэропорту; автомобили, движение которых приостановлено сигналом светофора на пути их следования, грузовые суда, ожидающие погрузки/разгрузки в порту, и т.п.

Изучение очередей в системах массового обслуживания (СМО) озволяет определить критерии функционирования обслуживающей системы, среди которых наиболее значимыми являются среднее время ожидания в очереди и средняя длина очереди. Эта информация используется затем для выбора надлежащего уровня обслуживания, что продемонстрировано в следующем примере.

Пример 2.6.1. Физические лица, сдающие декларацию о доходах, жалуются на медленное обслуживание. В настоящее время в данном подразделении работают три налоговых инспектора. В результате расчетов, формулы для которых мы рассмотрим ниже, обнаружена следующая зависимость между числом инспекторов и временем ожидания обслуживания.

Число инспекторов 1 2 3 4 5 6 7

Среднее время ожидания 80.2 50.3 34.9 24.8 14.912.9 9.4

______ (минуты) _______________________________________

Приведенные данные свидетельствуют о том, что при работающих в настоящее время трех инспекторах среднее время ожидания обслуживания примерно равно 35 минут. По мнению посетителей, приемлемо было бы 15 минут ожидания. Как следует из этих же данных, среднее время ожидания становится меньше 15 минут, если число инспекторов больше или равно пяти.

Затраты на обслуживание в единицу времени   Оптимальный уровень обслуживания

Результаты исследования системы обслуживания также можно использовать для оптимизации модели со стоимостными характеристиками, в которой минимизируется сумма затрат, связанных с предоставлением услуг, и потерь, обусловленных задержками в их предоставлении. На рис. 2.6.1 изображена типичная стоимостная модель системы обслуживания, где затраты на обслуживание возрастают с ростом его уровня. В то же время потери, обусловленные задержками в предоставлении услуг, уменьшаются с возрастанием уровня обслуживания.

Потери клиентов от ожидания в единицу времени

 
 

Уровень обслуживания

Рис. 2.6.1

Главной проблемой, связанной с применением стоимостных моделей, является трудность оценки потерь в единицу времени, обусловленных задержками в предоставлении услуг.

Задачи массового обслуживания возникают в том случае, когда заявки на обслуживание (или требования) не могут быть выполнены в силу занятости обслуживающего персонала (оборудования) или сама обслуживающая система оказывается бездействующей в силу отсутствия заявок. При моделировании данных задач используются фундаментальные понятия теории вероятности, т.к. случайными оказываются поток требований или длительность времени обслуживания, или и то и другое. При решении этих задач приходится определять либо оптимальное число обслуживающих каналов, либо оптимальную скорость потока (или находить моменты поступления заявок).

Класс моделей, пригодных для решения подобных задач, называют еще теорией очередей.

Эта теория представляет особый раздел теории случайных процессов и использует, в основном, аппарат теории вероятностей. Первые публикации в этой области относятся к 20-м гг. XX в. и принадлежат датчанину А. Эрлангу, занимавшемуся исследованиями функционирования телефонных станций – типичных СМО, где случайны моменты вызова, факт занятости абонента или всех каналов, продолжительность разговора. В дальнейшем теория очередей нашла развитие в работах К.Пальма, Ф.Поллачека, А.Я.Хинчина, Б.В.Гнеденко, А.Кофмана, Р.Крюона, Т. Cаати и других отечественных и зарубежных математиков.

При решении задач, связанных с очередями, возможны две ситуации:

а) число заказов слишком велико; имеет место большое время ожидания (недостаточный объем обслуживающего оборудования);

б) поступает недостаточное число заказов; имеет место простой оборудования (избыток оборудования).

Необходимо найти оптимальное соотношение между потерями, вызванными простоем оборудования, и потерями из-за ожидания.

В качестве основных элементов СМО следует выделить входной поток заявок, очередь на обслуживание, cистему (механизм) обслуживания и выходящий поток заявок. В роли заявок (требований, вызовов) могут выступать покупатели в магазине, телефонные вызовы, поезда при подходе к железнодорожному узлу, вагоны под разгрузкой, автомашины на станции техобслуживания, самолеты в ожидании разрешения на взлет, штабель бревен при погрузке на автотранспорт. Роль обслуживающих приборов (каналов, линий) играют продавцы или кассиры в магазине, таможенники, пожарные машины, взлетно-посадочные полосы, экзаменаторы, ремонтные бригады.

По характеру случайного процесса, происходящего в СМО, различают системы марковские и немарковские.

Случайный процесс называется марковским, если для любого момента времени t вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t и не зависят от того, когда и как система пришла в это состояние. Рассмотренные ниже модели относятся к марковским системам.

В случае немарковских процессов задачи исследования СМО значительно усложняются и требуют применения статистического моделирования, численных методов с использованием ЭВМ.







Дата добавления: 2015-04-16; просмотров: 689. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия