Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Многоканальные системы массового обслуживания





Модель 3.

Пусть параллельно могут обслуживаться не более s клиентов. Такие модели называются многоканальными (s – число каналов обслуживания). Здесь ln =l (n³0), mn = nm при n £s, mn = sm при n ³ s. Рассмотрим случай неограниченной длины очереди.

Для данной модели расчетные формулы (Эрланга) имеют вид:

Рn = Р0(l/m)n / n! (n £ s), (2.6.9)

Рn = Р0(l/m)n / s!/sn-s (n ³ s), (2.6.10)

(2.6.11)

Для среднее число клиентов, ожидающих обслуживания:

= Р0(l/m)s+1/(s–1)!/(s–l/m)2, (2.6.12)

для общего числа клиентов, находящихся в системе, имеем

n = +l/m, (2.6.13)

для среднее время ожидания обслуживания:

= /l. (2.6.14)

Вероятность обязательного пребывания в очереди равна вероятности занятости всех каналов обслуживания. Обозначим ее через W. Тогда

W= Р0(l/m)s/s!. (2.6.15)

Известный интерес представляет вероятность того, что суммарное время обслуживания и его ожидания превзойдет заданную величину t. Обозначим эту вероятность через Р(>t).

Р(>t)=emt(1+(W/s)(1– emst(1–l/ms–1/s))/(1–l/ms–1/s)). (2.6.16)

Вычисления в соответствии с данной моделью могут оказаться весьма громоздкими, тогда используют приближенные методы. Например, при l/m<<1 можно принять Р0 »1 – l/m, »(l/m)s+1/s2, тогда как для значений l/m, близких к 1,

Р0» (s – l/m)(s – 1)! /ss и » (l/m)/(s – l/m).

Пример 2.6.4. Пусть на нашей станции 3 канала обслуживания (исполнителя), а мест для ожидания неограниченное число. Пусть, как и прежде l = 5 и m =6. Имеем l/m =0.833, s =3 и

Р0 = 1/(0.8330/0!+0.8331/1!+0.8332/2!+ 0.8333 /(3!(1 –0.833/3))) = 0.432,

=0.432×0.8334/2!/(3–0.833)2 = 0.022,

=0.022/5 = 0.0044 часа.(16 сек.)

Таким образом, при данных условиях 43.2% времени станция простаивает, среднее время ожидания обслуживания составляет 16сек. С точки зрения клиента отлично, но простой оборудования (исполнителей) влетает в копеечку. Кроме того, имеем:

Р1 =0.40, Р2 =0.15, Р3 =0.04.

Вычислим параметры системы при 2 исполнителях.

Р0 = 1/(0.8330/0!+0.8331/1!+ 0.8332 /(2!(1 –0.833/2))) = 0.412,

= 0.412×0.8333/1!/(2–0.833)2 = 0.17,

= 0.17/5 = 0.034 часа.(2 мин.)

Простой составляет 41.2% времени, среднее время ожидания 2 мин.

Сравним с результатами примера 2.6.2, где при наличии только одного исполнителя простой составлял 17%, а среднее время ожидания 50 мин. В силу малого времени ожидания параметры W и Р(>t) в данном примере интереса не представляют. Р1 =0.34, Р2 =0.14, Р3 =0.06.

Модель 4.

Рассмотрим теперь модель, которая отличается от предыдущей только тем, что число мест для ожидания обслуживания ограничено величиной k. Здесь ln =l при 0≤n < k+s и ln =0 при n ³ k+s; mn = nm при n£s, mn = sm при s ≤ n ≤ s+k.

Формулы для характеристик модели имеют вид:

Рn = Р0(l/m)n / n! (n £ s), (2.6.17)

Рn = Р0(l/m)n / s!/sn-s (s ≤ n ≤ s+k), (2.6.18)

, l/m≠s, (2.6.19)

, l/m=s, (2.6.20)

Для среднее число клиентов, ожидающих обслуживания:

0(l/m)s+1(1–(l/ms)k–k(l/ms)k(1–l/ms))/(s–1)!/(s–l/m)2, l/m≠s, (2.6.21)

0(l/m)sk(k+1)/(2s!), l/m=s, (2.6.22)

для среднее время ожидания обслуживания:

= /l/(1– Рk+s). (2.6.23)

Пример 2.6.5. Пусть в дополнение к последнему примеру наша станция располагает двумя местами для ожидания обслуживания (k=2 и s=2). Тогда получим:

Р0=1/(0.8330/0!+0.833/1!+0.8332(1–(0.833/2)2+1)/2!/(1–0.833/2)) = 0.423,

=0.423×0.8333(1–(0.833/2)2–2(0.833/2)2(1–0.833/2))/1!/(2–0.833)2=0.25,

и =0.25/5/(1– Р2+2)= 0.25/5/(1 – 0.423×0.8334 /2!/22)=0.05 час.

Для двух каналов обслуживания входной поток заказов очень слабый, изменим его, пусть l=12, тогда l/m=2= s и мы имеем

Р0=1/(20/0! +2/1!+22(2+1)/2!)= 0.111,

=0.111*22*2*3/(2*2!)=0.67,

=0.67/12/(1–Р2+2)=0.67/12/(1–0.111×24/2!/22)=0.07 ч.

При таком входном потоке простой оборудования составляет 11.1%, а среднее время ожидания обслуживания 0.07×60= 4.3 мин.

Рассмотрим более крупный пример, на котором нагляднее иллюстрируются формулы моделей 3 и 4.

Пример 2.6.6.

Вариант 1. Имеем станцию с 4 каналами обслуживания и с неограниченным количеством мест для ожидания. Пусть l=20 заявок в час, время обслуживания одной заявки 11.5 мин. (m=60/11.5=5.217), тогда l/m=20/5.217=3.83 и s=4. Используем (2.6.11):

Р0 = 1/(3.830/0!+3.83/1!+3.832/2!+3.833/3!+3.834/4!/(1–3.83/4))=0.0042.

Из (2.6.12)–(2.6.14) получаем среднее время ожидания:

=0.0042×3.835/3!/(4–3.83)2/20= 1 час.

Вероятность обязательного пребывания в очереди (2.6.15):

W= 0.0042×3.834/4!=0.886.

Найдем вероятность того, что суммарное время обслуживания и ожидания превзойдет величину t=0.5 (30 мин.). Применим (2.6.16):

Р(>0.5) =e–5.217/2(1+0.886/4)(1–e–5.217×4/2(1–3.83/4–1/4))/(1–3.83/4–1/4))=0.7.

Таким образом, 88.6% клиентов обязательно проходят через очередь, причем 70% находятся в ней более получаса (правда, включая время обслуживания).

Вариант 2. Добавим к варианту 1 ограничение на количество мест для ожидания. Пусть k=16, тогда из (2.6.19) находим сначала

Р0=1/(1+3.83+3.832/2!+3.833/3!+3.834(1–(3.83/4)17)/4!/(1–3.83/4))=0.00759

и, следовательно, из (2.6.21) получаем

=0.00759×3.835(1–(3.83/4)16–16(3.83/4)16(1–3.83/4))/3!/(4–3.83)2=5.82.

Поскольку Р20=3.8320×0.00759/4!/416=0.03397, используя (2.6.23), имеем для среднего времени ожидания обслуживания:

=5.82/20/(1–0.03397) =0.301 часа.(18 мин.)

Сравнивая варианты 1 и 2, видим, что при ограничении мест для ожидания, продолжительность ожидания сокращается более чем в три раза, причем это достигается ценой потери около 3.4% потенциальных клиентов (Р20=0.03397).







Дата добавления: 2015-04-16; просмотров: 490. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия