Абсолютная сходимость несобственных интегралов
До сих пор при анализе сходимости несобственных интегралов мы предполагали, что подинтегральная функция принимает только положительные значения. Откажемся от этого предположения. Будем исследовать сходимость несобственных интегралов первого рода вида , где может принимать значения любого знака. Полученные результаты переносятся по аналогии на остальные несобственные интегралы первого и второго рода. Интеграл называется абсолютно сходящимся, если сходится несобственный интеграл . Теорема. Если интеграл абсолютно сходится, то он сходится. Доказательство. Введем в рассмотрение две вспомогательные функции . Эти функции принимают только положительные значения. Кроме того, . По первому признаку сравнения из абсолютной сходимости интеграла , т.е. из сходимости интеграла следует сходимость интегралов , . Тогда сходится интеграл . Теорема доказана. Пример. абсолютно сходится, так как а интеграл сходится.
|