Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление площади поверхности вращения





 

Пусть гладкая дуга представляет собой график непрерывно дифференцируемой функции . Эта дуга вращается вокруг оси OX, описывая некоторую поверхность. Требуется определить площадь этой поверхности.

Считая элемент поверхности боковой поверхностью усеченного конуса, высотой которого является отрезок , получим . Выделяя здесь линейную часть, пренебрегая квадратичным членом от дифференциала , получаем . Интегрируя и применяя формулу Ньютона – Лейбница, получим

.

Если функция задана параметрически или в полярной системе координат, то в этой формуле производится соответствующая замена переменной, формулы для дифференциала длины дуги приведены выше.

 

Пример. Дуга графика функции вращается вокруг оси OX, образуя «ведерко». Можно ли налить в это ведерко определенное количество краски так, чтобы окрасить боковую поверхность ведерка?

Во-первых, определим, конечен ли объем ведерка.

, интеграл сходится, объем конечен. Ведерко будет окрашено, если будет окрашена каждая точка поверхности, т.е. в том случае, когда боковая поверхность ведерка будет конечна.

. Так как а интеграл расходится, то по первому признаку сравнения будет расходиться и интеграл . Следовательно, боковая поверхность имеет бесконечную площадь, и боковую поверхность ведерка окрасить не удастся.

 







Дата добавления: 2015-04-16; просмотров: 499. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия