Вычисление площадей плоских фигур
1) Фигура ограничена графиком функции, заданной в декартовой системе координат. Мы пришли к понятию определенного интеграла от задачи о площади криволинейной трапеции (фактически, используя метод интегральных сумм). Если функция принимает только неотрицательные значения, то площадь под графиком функции на отрезке [a, b] может быть вычислена с помощью определенного интеграла . Заметим, что поэтому здесь можно увидеть и метод дифференциалов. Но функция может на некотором отрезке принимать и отрицательные значения, тогда интеграл по этому отрезку будет давать отрицательную площадь, что противоречит определению площади. Можно вычислять площадь по формуле S= . Это равносильно изменению знака функции в тех областях, в которых она принимает отрицательные значения. Если надо вычислить площадь фигуры, ограниченной сверху графиком функции , а снизу графиком функции , то можно пользоваться формулой S= , так как . Пример. Вычислить площадь фигуры, ограниченной прямыми x=0, x=2 и графиками функций y=x2, y=x3. Заметим, что на интервале (0,1) выполнено неравенство x2 > x3, а при x >1 выполнено неравенство x3 > x2. Поэтому
2. Фигура ограничена графиком функции, заданной в полярной системе координат.
Пусть график функции задан в полярной системе координат и мы хотим вычислить площадь криволинейного сектора, ограниченного двумя лучами и графиком функции в полярной системе координат. Здесь можно использовать метод интегральных сумм, вычисляя площадь криволинейного сектора как предел суммы площадей элементарных секторов, в которых график функции заменен дугой окружности . Можно использовать и метод дифференциалов: . Рассуждать можно так. Заменяя элементарный криволинейный сектор, соответствующий центральному углу круговым сектором, имеем пропорцию . Отсюда . Интегрируя и используя формулу Ньютона – Лейбница, получаем . Пример. Вычислим площадь круга (проверим формулу). Полагаем . Площадь круга равна . Пример. Вычислим площадь, ограниченную кардиоидой .
3 Фигура ограничена графиком функции, заданной параметрически. Функция может быть задана параметрически в виде . Используем формулу S= , подставляя в нее и пределы интегрирования по новой переменной . . Обычно при вычислении интеграла выделяют те области, где подинтегральная функция имеет определенный знак и учитывают соответствующую площадь с тем или иным знаком. Пример. Вычислить площадь, ограниченную эллипсом . Используем симметрию эллипса, вычислим площадь четверти эллипса, находящуюся в первом квадранте. В этом квадранте . Поэтому .
|