Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема о структуре общего решения неоднородного уравнения





Общее решение линейного неоднородного уравнения есть сумма частного решения линейного неоднородного уравнения и общего решения однородного уравнения.

.

 

Доказательство. Покажем, что - общее решение неоднородного уравнения.

1) - решение неоднородного уравнения как сумма решений однородного и неоднородного уравнений (теоремы о свойствах решений).

2) Зададим произвольные начальные условия , . Вычислим начальные условия для выбранного частного решения неоднородного уравнения . Получим систему линейных алгебраических уравнений для определения констант:

.

.

.

.........................................................................

.

Определитель этой системы – определитель Вронского. Он не равен нулю, так как решения линейно независимы. Поэтому константы определяются из этой системы по начальным условиям – правым частям системы единственным образом. Следовательно, - общее решение неоднородного уравнения.

 

Метод вариации произвольной постоянной для линейного неоднородного дифференциального уравнения n-ого порядка. . ().

Здесь обозначено , заметим, если - решение однородного уравнения, то .

Заметим, всегда, применяя метод вариации, надо делить на коэффициент при старшей производной, т.е. приводить уравнение.

 

Пусть найдено решение однородного уравнения

.

Варьируем произвольные постоянные, ищем решение неоднородного уравнения в виде

.

Дифференцируем это соотношение

.

Потребуем, чтобы

.,

тогда .

Дифференцируем еще раз

.

Потребуем, чтобы

.,

тогда .

Вновь дифференцируем и т.д., в результате, после n-2 дифференцирования получим

.

.

Дифференцируем и подставляем

+ .

в неоднородное уравнение .

+ =

Так как - решения однородного уравнения, то .

Получим .

Это – последнее уравнение системы для определения варьированных констант. Соберем все уравнения в систему для определения констант.

.,

.,

........................................................

.

Так как определитель системы – определитель Вронского, не равный нулю в силу линейной независимости решений, то функции определяются из этой системы однозначно.

Теперь общее решение неоднородного уравнения определяется по формуле .

 







Дата добавления: 2015-04-16; просмотров: 498. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия