Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема о структуре общего решения неоднородного уравнения





Общее решение линейного неоднородного уравнения есть сумма частного решения линейного неоднородного уравнения и общего решения однородного уравнения.

.

 

Доказательство. Покажем, что - общее решение неоднородного уравнения.

1) - решение неоднородного уравнения как сумма решений однородного и неоднородного уравнений (теоремы о свойствах решений).

2) Зададим произвольные начальные условия , . Вычислим начальные условия для выбранного частного решения неоднородного уравнения . Получим систему линейных алгебраических уравнений для определения констант:

.

.

.

.........................................................................

.

Определитель этой системы – определитель Вронского. Он не равен нулю, так как решения линейно независимы. Поэтому константы определяются из этой системы по начальным условиям – правым частям системы единственным образом. Следовательно, - общее решение неоднородного уравнения.

 

Метод вариации произвольной постоянной для линейного неоднородного дифференциального уравнения n-ого порядка. . ().

Здесь обозначено , заметим, если - решение однородного уравнения, то .

Заметим, всегда, применяя метод вариации, надо делить на коэффициент при старшей производной, т.е. приводить уравнение.

 

Пусть найдено решение однородного уравнения

.

Варьируем произвольные постоянные, ищем решение неоднородного уравнения в виде

.

Дифференцируем это соотношение

.

Потребуем, чтобы

.,

тогда .

Дифференцируем еще раз

.

Потребуем, чтобы

.,

тогда .

Вновь дифференцируем и т.д., в результате, после n-2 дифференцирования получим

.

.

Дифференцируем и подставляем

+ .

в неоднородное уравнение .

+ =

Так как - решения однородного уравнения, то .

Получим .

Это – последнее уравнение системы для определения варьированных констант. Соберем все уравнения в систему для определения констант.

.,

.,

........................................................

.

Так как определитель системы – определитель Вронского, не равный нулю в силу линейной независимости решений, то функции определяются из этой системы однозначно.

Теперь общее решение неоднородного уравнения определяется по формуле .

 







Дата добавления: 2015-04-16; просмотров: 498. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия