Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определитель Вронского





 

Определитель Вронского для функций вводится как определитель, столбцами которого являются производные этих функций от нулевого (сами функции) до n-1 го порядка.

.

 

Теорема. Если функции линейно зависимы, то

Доказательство. Так как функции линейно зависимы, то какая-либо из них линейно выражается через остальные, например,

. Тождество можно дифференцировать, поэтому

. Тогда первый столбец определителя Вронского линейно выражается через остальные столбцы, поэтому определитель Вронского тождественно равен нулю.

 

Теорема. Для того, чтобы решения линейного однородного дифференциального уравнения n-ого порядка были линейно зависимы, необходимо и достаточно, чтобы .

Доказательство. Необходимость следует из предыдущей теоремы.

Достаточность. Зафиксируем некоторую точку . Так как , то столбцы определителя, вычисленные в этой точке, представляют собой линейно зависимые векторы.

, что выполнены соотношения

.

Так как линейная комбинация решений линейного однородного уравнения является его решением, то можно ввести решение вида

- линейную комбинацию решений с теми же коэффициентами.

Заметим, что при это решение удовлетворяет нулевым начальным условиям, это следует из выписанной выше системы уравнений. Но тривиальное решение линейного однородного уравнения тоже удовлетворяет тем же нулевым начальным условиям. Поэтому из теоремы Коши следует, что введенное решение тождественно равно тривиальному, следовательно,

,

поэтому решения линейно зависимы.

 

Следствие. Если определитель Вронского, построенный на решениях линейного однородного уравнения, обращается в нуль хотя бы в одной точке, то он тождественно равен нулю.

Доказательство. Если , то решения линейно зависимы, следовательно, .

 

Теорема. 1. Для линейной зависимости решений необходимо и достаточно (или ).

2. Для линейной независимости решений необходимо и достаточно .

Доказательство. Первое утверждение следует из доказанной выше теоремы и следствия. Второе утверждение легко доказывается от противного.

Пусть решения линейно независимы. Если , то решения линейно зависимы. Противоречие. Следовательно, .

Пусть . Если решения линейно зависимы, то , следовательно, , противоречие. Поэтому решения линейно независимы.

Следствие. Обращение определителя Вронского в нуль хотя бы в одной точке является критерием линейной зависимости решений линейного однородного уравнения.

Отличие определителя Вронского от нуля является критерием линейной независимости решений линейного однородного уравнения.

 

Теорема. Размерность пространства решений линейного однородного уравнения n-ого порядка равна n.

 

Доказательство.

a) Покажем, что существуют n линейно независимых решений линейного однородного дифференциального уравнения n-го порядка. Рассмотрим решения , удовлетворяющие следующим начальным условиям:

...........................................................

Такие решения существуют. В самом деле, по теореме Коши через точку проходит единственная интегральная кривая – решение. Через точку проходит решение , через точку

- решение , через точку - решение .

Эти решения линейно независимы, так как .

b) Покажем, что любое решение линейного однородного уравнения линейно выражается через эти решения (является их линейной комбинацией).

Рассмотрим два решения. Одно - произвольное решение с начальными условиями . Справедливо соотношение

..........................................................................

, где

.

Второе решение – это линейная комбинация решений с теми же коэффициентами .

Вычисляя начальные условия в точке для решения , убеждаемся, что они совпадают с начальными условиями для решения . Следовательно, по теореме Коши, произвольное решение представляется в виде линейной комбинации линейно независимых решений .

Таким, образом, существует n линейно независимых решений линейного однородного дифференциального уравнения n-ого порядка, и произвольное решение линейно выражается через эти решения. Поэтому размерность пространства решений линейного однородного дифференциального уравнения n-ого порядка равна n. .

 

Любые n линейно независимых решений линейного однородного дифференциального уравнения n-ого порядка представляют собой базис пространства решений или фундаментальную систему решений.

 







Дата добавления: 2015-04-16; просмотров: 791. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия