Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция 14. Дифференциальные уравнения высших порядков





Дифференциальное уравнение n – ого порядка в общем виде записывается так:

.

Дифференциальное уравнение n – ого порядка в виде, разрешенном относительно старшей производной, выглядит так:

.

Решением дифференциального уравнения n – ого порядка называется функция , обращающая его в тождество.

Общим решением дифференциального уравнения n – ого порядка называется функция такая, что

1. при любом наборе констант эта функция является решением,

2. для любого набора начальных условий из области существования решения найдется набор констант , при котором функция удовлетворяет заданным начальным условиям, т.е. .

Заметим, что общее решение дифференциального уравнения n – ого порядка зависит ровно от n констант.

Частным решением дифференциального уравнения n – ого порядка называется какое-либо из решений, входящих в общее решение (при конкретном выборе констант).

Общим интегралом дифференциального уравнения n – ого порядка называется функция , сохраняющая свои значения на решениях дифференциального уравнения.

Интегральной кривой называется график частного решения.

Общее решение представляет собой совокупность интегральных кривых.

 

Обычно рассматривается одна из трех задач:

1. Найти общее решение дифференциального уравнения n – ого порядка,

2. Задача Коши – найти частное решение дифференциального уравнения n – ого порядка, удовлетворяющее заданным начальным условиям,

3. Краевая задача – найти частное решение, удовлетворяющее заданным начальным условиям, одна часть которых задана в точке , а другая часть в точке .

Теорема Коши (существования и единственности решения задачи Коши для дифференциального уравнения n – ого порядка ).

Пусть функция и ее частные производные по переменным определены и непрерывны в некоторой области .

Тогда для любой внутренней точки существует единственное решение дифференциального уравнения, удовлетворяющее этим начальным условиям, т.е.

(через любую внутреннюю точку проходит единственная интегральная кривая).

 

Пример. Рассмотрим дифференциальное уравнение второго порядка . Область существования и единственности решения заполнена непересекающимися интегральными кривыми. Через любую точку проходит единственная интегральная кривая. Однако через «точку» проходит бесконечно много интегральных кривых, все они различаются значениями . Заметим, что в «точка» представляет собой прямую .

 

Понижение порядка дифференциальных уравнений.

 

Мы умеем аналитически решать всего пять типов дифференциальных уравнений первого порядка: с разделяющимися переменными, однородные, линейные, Бернулли, в полных дифференциалах. Причем однородные, линейные и Бернулли тоже сводятся к уравнениям с разделяющимися переменными.

Даже решить уравнение второго порядка, не говоря уж об уравнении n-го порядка – проблема. Поэтому стараются понизить порядок дифференциального уравнения, если это возможно, чтобы свести его к известным типам уравнений первого порядка.

Если правая часть дифференциального уравнения n-го порядка зависит только от x, то интегрируя его n раз, можно получить решение.

.

Но это – очевидный случай. Рассмотрим менее очевидные случаи.

 







Дата добавления: 2015-04-16; просмотров: 518. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия