Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение в полных дифференциалах





 

Любое дифференциальное уравнение первого порядка, разрешенное относительно старшей производной, можно записать в виде

.

Если выполнено соотношение , то уравнение называется уравнением в полных дифференциалах.

Причину такого названия понять легко. Пусть - функция двух переменных, дифференцируемая и имеющая непрерывные вторые частные производные по своим переменным. Тогда .

Если обозначить , то исходное уравнение можно записать в виде полного дифференциала

, а соотношение как раз и означает равенство смешанных производных .

Поэтому решить уравнение в полных дифференциалах – означает найти функцию (она называется потенциалом). Так как на решениях дифференциального уравнения, то потенциал будет первым интегралом исходного дифференциального уравнения:

Для решения уравнения в полных дифференциалах можно использовать два способа.

1) ,

+ .

Здесь интегрирование ведется «частным образом»: только по переменной x, считая y константой или только по y, считая x константой.

Сравнивая оба выражения для , находим функции и константы.

Если какой-либо из интегралов, например, не берется или его вычислить сложно, то можно найти + .

Затем, дифференцируя частным образом по x, надо сравнить с и определить функции и константы.

2) Потенциал можно определять по формуле (она будет выведена из независимости криволинейного интеграла от пути интегрирования позже, в 3 семестре)

. .

 

Пример. .

Решим уравнение первым способом.

Так как , то это – уравнение в полных дифференциалах.

,

.

Сравнивая оба равенства, видим, что , поэтому . Соотношение - это первый интеграл заданного дифференциального уравнения.

 

Решим уравнение вторым способом.

. Здесь принято .

 







Дата добавления: 2015-04-16; просмотров: 419. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия