Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение в полных дифференциалах





 

Любое дифференциальное уравнение первого порядка, разрешенное относительно старшей производной, можно записать в виде

.

Если выполнено соотношение , то уравнение называется уравнением в полных дифференциалах.

Причину такого названия понять легко. Пусть - функция двух переменных, дифференцируемая и имеющая непрерывные вторые частные производные по своим переменным. Тогда .

Если обозначить , то исходное уравнение можно записать в виде полного дифференциала

, а соотношение как раз и означает равенство смешанных производных .

Поэтому решить уравнение в полных дифференциалах – означает найти функцию (она называется потенциалом). Так как на решениях дифференциального уравнения, то потенциал будет первым интегралом исходного дифференциального уравнения:

Для решения уравнения в полных дифференциалах можно использовать два способа.

1) ,

+ .

Здесь интегрирование ведется «частным образом»: только по переменной x, считая y константой или только по y, считая x константой.

Сравнивая оба выражения для , находим функции и константы.

Если какой-либо из интегралов, например, не берется или его вычислить сложно, то можно найти + .

Затем, дифференцируя частным образом по x, надо сравнить с и определить функции и константы.

2) Потенциал можно определять по формуле (она будет выведена из независимости криволинейного интеграла от пути интегрирования позже, в 3 семестре)

. .

 

Пример. .

Решим уравнение первым способом.

Так как , то это – уравнение в полных дифференциалах.

,

.

Сравнивая оба равенства, видим, что , поэтому . Соотношение - это первый интеграл заданного дифференциального уравнения.

 

Решим уравнение вторым способом.

. Здесь принято .

 







Дата добавления: 2015-04-16; просмотров: 419. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия